Stability of travelling waves in a model for conical flames in two space dimensions

François Hamel; Régis Monneau; Jean-Michel Roquejoffre

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 3, page 469-506
  • ISSN: 0012-9593

How to cite

top

Hamel, François, Monneau, Régis, and Roquejoffre, Jean-Michel. "Stability of travelling waves in a model for conical flames in two space dimensions." Annales scientifiques de l'École Normale Supérieure 37.3 (2004): 469-506. <http://eudml.org/doc/82637>.

@article{Hamel2004,
author = {Hamel, François, Monneau, Régis, Roquejoffre, Jean-Michel},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {ignition temperature; Bunsen burner flames; subsolution; supersolutions; conical shaped travelling wave},
language = {eng},
number = {3},
pages = {469-506},
publisher = {Elsevier},
title = {Stability of travelling waves in a model for conical flames in two space dimensions},
url = {http://eudml.org/doc/82637},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Hamel, François
AU - Monneau, Régis
AU - Roquejoffre, Jean-Michel
TI - Stability of travelling waves in a model for conical flames in two space dimensions
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 3
SP - 469
EP - 506
LA - eng
KW - ignition temperature; Bunsen burner flames; subsolution; supersolutions; conical shaped travelling wave
UR - http://eudml.org/doc/82637
ER -

References

top
  1. [1] Agmon S, Nirenberg L, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math.16 (1963) 121-239. Zbl0117.10001MR155203
  2. [2] Aronson D.G, Weinberger H.F, Nonlinear diffusion in population genetics, combustion and nerve propagation, in: Part. Diff. Eq. and Related Topics, Lecture Notes in Math., vol. 446, Springer, New York, 1975, pp. 5-49. Zbl0325.35050MR427837
  3. [3] Berestycki H, Hamel F, Front propagation in periodic excitable media, Comm. Pure Appl. Math.55 (2002) 949-1032. Zbl1024.37054MR1900178
  4. [4] Berestycki H, Larrouturou B, Lions P.-L, Multidimensional travelling-wave solutions of a flame propagation model, Arch. Rat. Mech. Anal.111 (1990) 33-49. Zbl0711.35066MR1051478
  5. [5] Berestycki H, Larrouturou B, Roquejoffre J.-M, Stability of travelling fronts in a curved flame model, Part I, Linear analysis, Arch. Rat. Mech. Anal.117 (1992) 97-117. Zbl0763.76033MR1145107
  6. [6] Berestycki H, Nicolaenko B, Scheurer B, Traveling waves solutions to combustion models and their singular limits, SIAM J. Math. Anal.16 (6) (1985) 1207-1242. Zbl0596.76096MR807905
  7. [7] Berestycki H, Nirenberg L, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat.22 (1991) 1-37. Zbl0784.35025MR1159383
  8. [8] Berestycki H, Nirenberg L, Travelling fronts in cylinders, Ann. Inst. H. Poincaré, Anal. Non Lin.9 (1992) 497-572. Zbl0799.35073MR1191008
  9. [9] Bonnet A, Hamel F, Existence of non-planar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal.31 (1999) 80-118. Zbl0942.35072MR1742304
  10. [10] Bramson M, Convergence of Solutions of the Kolmogorov Equation to Travelling Waves, in: Mem. Amer. Math. Soc., vol. 44, 1983. Zbl0517.60083MR705746
  11. [11] Brazhnik P.K, Tyson J.J, On traveling wave solutions of Fisher's equation in two spatial dimensions, SIAM J. Appl. Math.60 (2000) 371-391. Zbl0957.35065MR1740251
  12. [12] Buckmaster J.D, Ludford G.S.S, Lectures on Mathematical Combustion, in: CBMS-NSF Conf. Series in Applied Math., vol. 43, SIAM, 1983. Zbl0574.76001MR765073
  13. [13] Caffarelli L.A, Cabré X, Fully Nonlinear Elliptic Equations, in: Colloquium Publications, Amer. Math. Soc., vol. 43, 1995. Zbl0834.35002MR1351007
  14. [14] Crandall M.G, Ishii H, Lions P.-L, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.)27 (1992) 1-67. Zbl0755.35015MR1118699
  15. [15] Collet P, Eckmann J.-P, Space-time behaviour in problems of hydrodynamic type: a case study, Nonlinearity5 (6) (1992) 1265-1302. Zbl0757.35059MR1192518
  16. [16] Fife P.C, Dynamics of internal layers and diffusive interfaces, in: Cbms-Nsf Regional Conference, Series in Applied Mathematics, vol. 53, 1988. Zbl0684.35001MR981594
  17. [17] Fife P.C, McLeod J.B, The approach of solutions of non-linear diffusion equations to travelling front solutions, Arch. Rat. Mech. Anal.65 (1977) 335-361. Zbl0361.35035MR442480
  18. [18] Gilbarg D, Trudinger N.S, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1997. Zbl0562.35001
  19. [19] Hamel F, Monneau R, Solutions of semilinear elliptic equations in RN with conical-shaped level sets, Comm. Partial Differential Equations25 (2000) 769-819. Zbl0952.35041MR1759793
  20. [20] Hamel F, Monneau R, Existence and uniqueness for a free boundary problem arising in combustion theory, Interfaces Free Boundaries4 (2002) 167-210. Zbl1078.80004MR1950528
  21. [21] Hamel F, Nadirashvili N, Travelling waves and entire solutions of the Fisher-KPP equation in RN, Arch. Ration. Mech. Anal.157 (2001) 91-163. Zbl0987.35072MR1830037
  22. [22] Henry D, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Math., Springer Verlag, New York, 1981. Zbl0456.35001MR610244
  23. [23] Ishii H, On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE's, Comm. Pure Appl. Math.42 (1989) 15-45. Zbl0645.35025MR973743
  24. [24] Joulin G, Dynamique des fronts de flammes, in: Modélisation de la combustion, Images des Mathématiques, CNRS, 1996. 
  25. [25] Kanel' Ya.I, Certain problems of burning-theory equations, Sov. Math. Dokl.2 (1961) 48-51. Zbl0138.35103MR117429
  26. [26] Kanel' Ya.I, Stabilization of solution of the Cauchy problem for equations encountered in combustion theory, Mat. Sbornik59 (1962) 245-288. MR157130
  27. [27] Levermore C.D, Xin J.X, Multidimensional stability of travelling waves in a bistable reaction-diffusion equation, II, Comm. Partial Differential Equations17 (1992) 1901-1924. Zbl0789.35020MR1194744
  28. [28] Lewis B, Von Elbe G, Combustion, Flames and Explosions of Gases, Academic Press, New York, 1961. 
  29. [29] Mallordy J.-F, Roquejoffre J.-M, A parabolic equation of the KPP type in higher dimensions, SIAM J. Math. Anal.26 (1995) 1-20. Zbl0813.35041MR1311879
  30. [30] Matkowsky B.J, Olagunju D.O, Pulsations in a burner-stabilized premixed plane flame, SIAM J. Appl. Math.40 (1981) 551-562. Zbl0484.76094MR614749
  31. [31] Michelson D, Stability of the Bunsen flame profiles in the Kuramoto–Sivashinsky equation, SIAM J. Math. Anal.27 (1996) 765-781. Zbl0851.34020MR1382832
  32. [32] Ninomiya H., Taniguchi M., Stability of traveling curved fronts in a curvature flow with driving force, Meth. Appl. Anal., submitted for publication. Zbl1007.35004MR1904754
  33. [33] Roquejoffre J.-M, Stability of travelling fronts in a curved flame model, Part II: Non-linear orbital stability, Arch. Rat. Mech. Anal.117 (1992) 119-153. Zbl0763.76034MR1145108
  34. [34] Roquejoffre J.-M, Convergence to travelling waves for solutions of a class of semilinear parabolic equation, J. Differential Equations108 (1994) 262-295. Zbl0806.35093MR1270581
  35. [35] Roquejoffre J.-M, Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders, Ann. Inst. H. Poincaré, Anal. Non Lin.14 (1997) 499-552. Zbl0884.35013MR1464532
  36. [36] Sattinger D.H, Stability of waves of nonlinear parabolic systems, Adv. Math.22 (1976) 312-355. Zbl0344.35051MR435602
  37. [37] Sattinger D.H, Weighted norms for the stability of travelling waves, J. Differential Equations25 (1977) 130-144. Zbl0315.35010MR447813
  38. [38] Sivashinsky G.I, The structure of Bunsen flames, J. Chem. Phys.62 (1975) 638-643. 
  39. [39] Stewart H.B, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc.259 (1980) 299-310. Zbl0451.35033MR561838
  40. [40] Williams F, Combustion Theory, Addison-Wesley, Reading, MA, 1983. 
  41. [41] Xin J.X, Muldimensional stability of travelling waves in a bistable reaction-diffusion equation, I, Comm. Partial Differential Equations17 (1992) 1889-1899. Zbl0789.35019MR1194743

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.