Gradient estimates for a new class of degenerate elliptic and parabolic equations

Gary M. Lieberman

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)

  • Volume: 21, Issue: 4, page 497-522
  • ISSN: 0391-173X

How to cite

top

Lieberman, Gary M.. "Gradient estimates for a new class of degenerate elliptic and parabolic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.4 (1994): 497-522. <http://eudml.org/doc/84190>.

@article{Lieberman1994,
author = {Lieberman, Gary M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {degenerate elliptic equation; degenerate parabolic equation; Moser's iteration scheme},
language = {eng},
number = {4},
pages = {497-522},
publisher = {Scuola normale superiore},
title = {Gradient estimates for a new class of degenerate elliptic and parabolic equations},
url = {http://eudml.org/doc/84190},
volume = {21},
year = {1994},
}

TY - JOUR
AU - Lieberman, Gary M.
TI - Gradient estimates for a new class of degenerate elliptic and parabolic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 4
SP - 497
EP - 522
LA - eng
KW - degenerate elliptic equation; degenerate parabolic equation; Moser's iteration scheme
UR - http://eudml.org/doc/84190
ER -

References

top
  1. [1] H.J. Choe, Interior behaviour of minimizers for certain functionals with nonstandard growth. Nonlinear Anal.19 (1992), 933-945. Zbl0786.35040MR1192273
  2. [2] E. Di Benedetto, On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Norm. Sup. Cl. Sci.13 (1986), 487-535. Zbl0635.35052MR881103
  3. [3] M. Giaquinta, Growth conditions and regularity a counterexample. Manuscripta Math.50 (1987), 245-248. Zbl0638.49005MR905200
  4. [4] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer-Verlag, Berlin -Heidelberg-New York- Tokyo, 1983. Zbl0562.35001MR737190
  5. [5] O.A. Ladyzhenskaya - N.N. Utal'tseva, Linear and Quasilinear Elliptic Equations, "Nauka", Moscow, 1964 (Russian); English transl., 2nd Russian ed., 1973, Academic Press, New York, 1968. Zbl0164.13002MR244627
  6. [6] G.M. Lieberman, The conormal derivative problem for elliptic equations of variational type, J. Differential Equations49 (1983), 218-257. Zbl0476.35032MR708644
  7. [7] G.M. Lieberman, Interior gradient bounds for non-uniformly parabolic equations, Indiana Univ. Math. J.32 (1983), 579-601. Zbl0491.35021MR703286
  8. [8] G.M. Lieberman, The first initial-boundary value problem for quasilinear second order parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci.13 (1986), 347-387. Zbl0655.35047MR881097
  9. [9] G.M. Lieberman, The conormal derivative problem for non-uniformly parabolic equations. Indiana Univ. Math. J.37 (1988), 23-73; Addenda, ibid.39 (1990), 270-281. Zbl0707.35077MR942094
  10. [10] G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Comm. Partial Differential Equations16 (1991), 311-361. Zbl0742.35028MR1104103
  11. [11] G.M. Lieberman, The conormal derivative problem for equations of variational type in nonsmooth domains, Trans. Amer. Math. Soc.330 (1992), 41-67. Zbl0771.35023MR1116317
  12. [12] G.M. Lieberman, Gradient estimates for a class of elliptic systems, Ann. Mat. Pura Appl. (to appear). Zbl0819.35019MR1243951
  13. [13] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal.105 (1989), 267-284. Zbl0667.49032MR969900
  14. [14] P. Marcellini, Regularity of existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations90 (1991), 1-30. Zbl0724.35043MR1094446
  15. [15] P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations105 (1993), 296-333. Zbl0812.35042MR1240398
  16. [16] J.H. Michael - L.M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of Rn, Comm. Pure Appl. Math.26 (1973), 361-379. Zbl0256.53006MR344978
  17. [17] P.Z. Mkrtychyan, Singular quasilinear parabolic equation arising in nonstationary filtration theory, Izv. Akad. Nau. Armyan. SSSR. Mat.24 (1989), 103-116; English transl. in Soviet J. Contemp. Math.24 (1989), 1-13. Zbl0706.35073MR1015845
  18. [18] P.Z. Mkrtychyan, An estimate of the solution gradient and the classical solvability of the first initial-boundary value problem for a class of quasilinear nonuniformly parabolic equations, Izv. Akad. Nauk Armyan. SSR. Ser. Mat.24 (1989), 293-299; English transl. in Soviet J. Contemp. Math.24 (1989), 85-91. Zbl0701.35030MR1029916
  19. [19] J.B. Serrin, Gradient estimates for solutions of nonlinear eliptic and parabolic equations. In: Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, pp. 565-701. Zbl0271.35004MR402274
  20. [20] L. Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. Math. J.25 (1976), 821-855. Zbl0346.35016MR412605
  21. [21] G.M. Troianiello, Maximal and minimal solutions to a class of elliptic quasilinear problems, Proc. Amer. Math. Soc.91 (1984), 95-101. Zbl0524.35051MR735572

Citations in EuDML Documents

top
  1. E Acerbi, G Mingione, G. A. Seregin, Regularity results for parabolic systems related to a class of non-newtonian fluids
  2. Ilaria Fragalà, Filippo Gazzola, Bernd Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations
  3. Marino Belloni, Bernd Kawohl, The pseudo- p -Laplace eigenvalue problem and viscosity solutions as p
  4. Marino Belloni, Bernd Kawohl, The pseudo--Laplace eigenvalue problem and viscosity solutions as → ∞
  5. Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.