Gradient estimates for a new class of degenerate elliptic and parabolic equations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)
- Volume: 21, Issue: 4, page 497-522
- ISSN: 0391-173X
Access Full Article
topHow to cite
topLieberman, Gary M.. "Gradient estimates for a new class of degenerate elliptic and parabolic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.4 (1994): 497-522. <http://eudml.org/doc/84190>.
@article{Lieberman1994,
author = {Lieberman, Gary M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {degenerate elliptic equation; degenerate parabolic equation; Moser's iteration scheme},
language = {eng},
number = {4},
pages = {497-522},
publisher = {Scuola normale superiore},
title = {Gradient estimates for a new class of degenerate elliptic and parabolic equations},
url = {http://eudml.org/doc/84190},
volume = {21},
year = {1994},
}
TY - JOUR
AU - Lieberman, Gary M.
TI - Gradient estimates for a new class of degenerate elliptic and parabolic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 4
SP - 497
EP - 522
LA - eng
KW - degenerate elliptic equation; degenerate parabolic equation; Moser's iteration scheme
UR - http://eudml.org/doc/84190
ER -
References
top- [1] H.J. Choe, Interior behaviour of minimizers for certain functionals with nonstandard growth. Nonlinear Anal.19 (1992), 933-945. Zbl0786.35040MR1192273
- [2] E. Di Benedetto, On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Norm. Sup. Cl. Sci.13 (1986), 487-535. Zbl0635.35052MR881103
- [3] M. Giaquinta, Growth conditions and regularity a counterexample. Manuscripta Math.50 (1987), 245-248. Zbl0638.49005MR905200
- [4] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. 2nd ed., Springer-Verlag, Berlin -Heidelberg-New York- Tokyo, 1983. Zbl0562.35001MR737190
- [5] O.A. Ladyzhenskaya - N.N. Utal'tseva, Linear and Quasilinear Elliptic Equations, "Nauka", Moscow, 1964 (Russian); English transl., 2nd Russian ed., 1973, Academic Press, New York, 1968. Zbl0164.13002MR244627
- [6] G.M. Lieberman, The conormal derivative problem for elliptic equations of variational type, J. Differential Equations49 (1983), 218-257. Zbl0476.35032MR708644
- [7] G.M. Lieberman, Interior gradient bounds for non-uniformly parabolic equations, Indiana Univ. Math. J.32 (1983), 579-601. Zbl0491.35021MR703286
- [8] G.M. Lieberman, The first initial-boundary value problem for quasilinear second order parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci.13 (1986), 347-387. Zbl0655.35047MR881097
- [9] G.M. Lieberman, The conormal derivative problem for non-uniformly parabolic equations. Indiana Univ. Math. J.37 (1988), 23-73; Addenda, ibid.39 (1990), 270-281. Zbl0707.35077MR942094
- [10] G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Comm. Partial Differential Equations16 (1991), 311-361. Zbl0742.35028MR1104103
- [11] G.M. Lieberman, The conormal derivative problem for equations of variational type in nonsmooth domains, Trans. Amer. Math. Soc.330 (1992), 41-67. Zbl0771.35023MR1116317
- [12] G.M. Lieberman, Gradient estimates for a class of elliptic systems, Ann. Mat. Pura Appl. (to appear). Zbl0819.35019MR1243951
- [13] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Rational Mech. Anal.105 (1989), 267-284. Zbl0667.49032MR969900
- [14] P. Marcellini, Regularity of existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations90 (1991), 1-30. Zbl0724.35043MR1094446
- [15] P. Marcellini, Regularity for elliptic equations with general growth conditions, J. Differential Equations105 (1993), 296-333. Zbl0812.35042MR1240398
- [16] J.H. Michael - L.M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of Rn, Comm. Pure Appl. Math.26 (1973), 361-379. Zbl0256.53006MR344978
- [17] P.Z. Mkrtychyan, Singular quasilinear parabolic equation arising in nonstationary filtration theory, Izv. Akad. Nau. Armyan. SSSR. Mat.24 (1989), 103-116; English transl. in Soviet J. Contemp. Math.24 (1989), 1-13. Zbl0706.35073MR1015845
- [18] P.Z. Mkrtychyan, An estimate of the solution gradient and the classical solvability of the first initial-boundary value problem for a class of quasilinear nonuniformly parabolic equations, Izv. Akad. Nauk Armyan. SSR. Ser. Mat.24 (1989), 293-299; English transl. in Soviet J. Contemp. Math.24 (1989), 85-91. Zbl0701.35030MR1029916
- [19] J.B. Serrin, Gradient estimates for solutions of nonlinear eliptic and parabolic equations. In: Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, pp. 565-701. Zbl0271.35004MR402274
- [20] L. Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. Math. J.25 (1976), 821-855. Zbl0346.35016MR412605
- [21] G.M. Troianiello, Maximal and minimal solutions to a class of elliptic quasilinear problems, Proc. Amer. Math. Soc.91 (1984), 95-101. Zbl0524.35051MR735572
Citations in EuDML Documents
top- E Acerbi, G Mingione, G. A. Seregin, Regularity results for parabolic systems related to a class of non-newtonian fluids
- Ilaria Fragalà, Filippo Gazzola, Bernd Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations
- Marino Belloni, Bernd Kawohl, The pseudo--Laplace eigenvalue problem and viscosity solutions as
- Marino Belloni, Bernd Kawohl, The pseudo--Laplace eigenvalue problem and viscosity solutions as → ∞
- Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.