Comparison results between minimal barriers and viscosity solutions for geometric evolutions

Giovanni Bellettini; Matteo Novaga

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 1, page 97-131
  • ISSN: 0391-173X

How to cite

top

Bellettini, Giovanni, and Novaga, Matteo. "Comparison results between minimal barriers and viscosity solutions for geometric evolutions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.1 (1998): 97-131. <http://eudml.org/doc/84325>.

@article{Bellettini1998,
author = {Bellettini, Giovanni, Novaga, Matteo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {mean curvature flow; level set method; relaxation procedure},
language = {eng},
number = {1},
pages = {97-131},
publisher = {Scuola normale superiore},
title = {Comparison results between minimal barriers and viscosity solutions for geometric evolutions},
url = {http://eudml.org/doc/84325},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Bellettini, Giovanni
AU - Novaga, Matteo
TI - Comparison results between minimal barriers and viscosity solutions for geometric evolutions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 1
SP - 97
EP - 131
LA - eng
KW - mean curvature flow; level set method; relaxation procedure
UR - http://eudml.org/doc/84325
ER -

References

top
  1. [1] L. Ambrosio - H.-M. Soner, A level set approach to the evolution of surfaces of any codimension, J. Differential Geom.43 (1996), 693-737. Zbl0868.35046MR1412682
  2. [2] B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations2 (1994), 151-171. Zbl0805.35048MR1385524
  3. [3] B. Andrews, Contraction of convex hypersurfaces in Riemannian spaces, J. Differential Geom.34 (1994), 407-431. Zbl0797.53044MR1267897
  4. [4] G. Barles - H.-M. Soner - P.E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim.31 (1993), 439-469. Zbl0785.35049MR1205984
  5. [5] G. Bellettini, Alcuni risultati sulle minime barriere per movimenti geometrici di insiemi, Boll. Un. Mat. Ital.11 (1997), 485-512. Zbl0893.35043
  6. [6] G. Bellettini - M. Novaga, Minimal barriers for geometric evolutions, J. Differential Equations139 (1997), 76-103. Zbl0882.35028MR1467354
  7. [7] G. Bellettini - M. Paolini, Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 19 (1995), 43-67. Zbl0944.53039MR1387549
  8. [8] G. Bellettini - M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J.25 (1996), 537-566. Zbl0873.53011MR1416006
  9. [9] Y.G. Chen - Y. Giga - S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geom.33 (1991), 749-786. Zbl0696.35087MR1100211
  10. [10] M.G. Crandall - H. Ishii - P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.)27 (1992), 1-67. Zbl0755.35015MR1118699
  11. [11] M.G. Crandall - P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc.227 (1983), 1-42. Zbl0599.35024MR690039
  12. [12] E. De Giorgi, Barriers, boundaries, motion of manifolds, Conference held at Dipartimento di Matematica of Pavia, March 18, 1994. 
  13. [13] L.C. Evans - J. Spruck, Motion of level sets by mean curvature I, J. Differential Geom.33 (1991), 635-681. Zbl0726.53029MR1100206
  14. [14] L.C. Evans - J. Spruck, Motion of level sets by mean curvature II, Trans. Amer. Math. Soc.330 (1992), 321-332. Zbl0776.53005MR1068927
  15. [15] Y. Giga - S. Goto, Geometric evolution of phase-boundaries, On the evolution of phase boundaries (M.E. Gurtin and G.B. MacFadden, eds.) vol. IMAVMA43, Springer-Verlag, New York, 1992, 51-65. Zbl0771.35027MR1226914
  16. [16] Y. Giga - S. Goto - H. Ishii - M.H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J.40 (1991), 443-470. Zbl0836.35009MR1119185
  17. [17] S. Goto, Generalized motion of hypersurfaces whose growth speed depends superlinearly on the curvature tensor, Differential Integral Equations7 (1994), 323-343. Zbl0808.35007MR1255892
  18. [18] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom.20 (1984), 237-266. Zbl0556.53001MR772132
  19. [19] G. Huisken - T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, in preparation. Zbl1055.53052
  20. [20] T. Ilmanen, The level-set flow on a manifold, Proc. Symp. Pure Math.54 (1993), 193-204. Zbl0827.53014MR1216585
  21. [21] T. Ilmanen, Generalized flow of sets by mean curvature on a manifold, Indiana Univ. Math. J.41 (1992), 671-705. Zbl0759.53035MR1189906
  22. [22] H. Ishii - P.E. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J.47 (1995), 227-250. Zbl0837.35066MR1329522
  23. [23] P.-L. Lions, "Generalized solutions of Hamilton-Jacobi equations", Pitman Research Notes in Mathematics, Boston, 1982. Zbl0497.35001MR667669
  24. [24] A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems", Birkhäuser, Boston, 1995. Zbl0816.35001MR1329547
  25. [25] H.-M. Soner, Motion of a set by the curvature of its boundary, J. Differential Equations101 (1993), 313-372. Zbl0769.35070MR1204331

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.