Comparison results between minimal barriers and viscosity solutions for geometric evolutions
Giovanni Bellettini; Matteo Novaga
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)
- Volume: 26, Issue: 1, page 97-131
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBellettini, Giovanni, and Novaga, Matteo. "Comparison results between minimal barriers and viscosity solutions for geometric evolutions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.1 (1998): 97-131. <http://eudml.org/doc/84325>.
@article{Bellettini1998,
author = {Bellettini, Giovanni, Novaga, Matteo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {mean curvature flow; level set method; relaxation procedure},
language = {eng},
number = {1},
pages = {97-131},
publisher = {Scuola normale superiore},
title = {Comparison results between minimal barriers and viscosity solutions for geometric evolutions},
url = {http://eudml.org/doc/84325},
volume = {26},
year = {1998},
}
TY - JOUR
AU - Bellettini, Giovanni
AU - Novaga, Matteo
TI - Comparison results between minimal barriers and viscosity solutions for geometric evolutions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 1
SP - 97
EP - 131
LA - eng
KW - mean curvature flow; level set method; relaxation procedure
UR - http://eudml.org/doc/84325
ER -
References
top- [1] L. Ambrosio - H.-M. Soner, A level set approach to the evolution of surfaces of any codimension, J. Differential Geom.43 (1996), 693-737. Zbl0868.35046MR1412682
- [2] B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations2 (1994), 151-171. Zbl0805.35048MR1385524
- [3] B. Andrews, Contraction of convex hypersurfaces in Riemannian spaces, J. Differential Geom.34 (1994), 407-431. Zbl0797.53044MR1267897
- [4] G. Barles - H.-M. Soner - P.E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optim.31 (1993), 439-469. Zbl0785.35049MR1205984
- [5] G. Bellettini, Alcuni risultati sulle minime barriere per movimenti geometrici di insiemi, Boll. Un. Mat. Ital.11 (1997), 485-512. Zbl0893.35043
- [6] G. Bellettini - M. Novaga, Minimal barriers for geometric evolutions, J. Differential Equations139 (1997), 76-103. Zbl0882.35028MR1467354
- [7] G. Bellettini - M. Paolini, Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature, Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 19 (1995), 43-67. Zbl0944.53039MR1387549
- [8] G. Bellettini - M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J.25 (1996), 537-566. Zbl0873.53011MR1416006
- [9] Y.G. Chen - Y. Giga - S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geom.33 (1991), 749-786. Zbl0696.35087MR1100211
- [10] M.G. Crandall - H. Ishii - P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.)27 (1992), 1-67. Zbl0755.35015MR1118699
- [11] M.G. Crandall - P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc.227 (1983), 1-42. Zbl0599.35024MR690039
- [12] E. De Giorgi, Barriers, boundaries, motion of manifolds, Conference held at Dipartimento di Matematica of Pavia, March 18, 1994.
- [13] L.C. Evans - J. Spruck, Motion of level sets by mean curvature I, J. Differential Geom.33 (1991), 635-681. Zbl0726.53029MR1100206
- [14] L.C. Evans - J. Spruck, Motion of level sets by mean curvature II, Trans. Amer. Math. Soc.330 (1992), 321-332. Zbl0776.53005MR1068927
- [15] Y. Giga - S. Goto, Geometric evolution of phase-boundaries, On the evolution of phase boundaries (M.E. Gurtin and G.B. MacFadden, eds.) vol. IMAVMA43, Springer-Verlag, New York, 1992, 51-65. Zbl0771.35027MR1226914
- [16] Y. Giga - S. Goto - H. Ishii - M.H. Sato, Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains, Indiana Univ. Math. J.40 (1991), 443-470. Zbl0836.35009MR1119185
- [17] S. Goto, Generalized motion of hypersurfaces whose growth speed depends superlinearly on the curvature tensor, Differential Integral Equations7 (1994), 323-343. Zbl0808.35007MR1255892
- [18] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom.20 (1984), 237-266. Zbl0556.53001MR772132
- [19] G. Huisken - T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, in preparation. Zbl1055.53052
- [20] T. Ilmanen, The level-set flow on a manifold, Proc. Symp. Pure Math.54 (1993), 193-204. Zbl0827.53014MR1216585
- [21] T. Ilmanen, Generalized flow of sets by mean curvature on a manifold, Indiana Univ. Math. J.41 (1992), 671-705. Zbl0759.53035MR1189906
- [22] H. Ishii - P.E. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tohoku Math. J.47 (1995), 227-250. Zbl0837.35066MR1329522
- [23] P.-L. Lions, "Generalized solutions of Hamilton-Jacobi equations", Pitman Research Notes in Mathematics, Boston, 1982. Zbl0497.35001MR667669
- [24] A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems", Birkhäuser, Boston, 1995. Zbl0816.35001MR1329547
- [25] H.-M. Soner, Motion of a set by the curvature of its boundary, J. Differential Equations101 (1993), 313-372. Zbl0769.35070MR1204331
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.