Gradient flow for the one-dimensional Mumford-Shah functional

Massimo Gobbino

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 27, Issue: 1, page 145-193
  • ISSN: 0391-173X

How to cite

top

Gobbino, Massimo. "Gradient flow for the one-dimensional Mumford-Shah functional." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.1 (1998): 145-193. <http://eudml.org/doc/84351>.

@article{Gobbino1998,
author = {Gobbino, Massimo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {-convergence; SBV functions; evolution equations; gradient flow; Mumford-Shah functional; heat equation},
language = {eng},
number = {1},
pages = {145-193},
publisher = {Scuola normale superiore},
title = {Gradient flow for the one-dimensional Mumford-Shah functional},
url = {http://eudml.org/doc/84351},
volume = {27},
year = {1998},
}

TY - JOUR
AU - Gobbino, Massimo
TI - Gradient flow for the one-dimensional Mumford-Shah functional
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 1
SP - 145
EP - 193
LA - eng
KW - -convergence; SBV functions; evolution equations; gradient flow; Mumford-Shah functional; heat equation
UR - http://eudml.org/doc/84351
ER -

References

top
  1. [ 1 ] L. Ambrosio, A Compactness Theorem for a New Class of Functions of Bounded Variation, Boll. Un. Mat. Ital.3-B (1989), 857-881. Zbl0767.49001MR1032614
  2. [2] L. Ambrosio, Existence Theory for a New Class of Variational Problems, Arch. Rational Mech. Anal.111 (1990), 291-322. Zbl0711.49064MR1068374
  3. [3] L. Ambrosio, Free Discontinuity Problems and Special Functions with Bounded Variation, Proceedings ECM2Budapest1996, Progress in Mathematics168 (1998), 15-35. Zbl0909.49002MR1645795
  4. [4] L. Ambrosio - A. Braides, Energies in SB V and Variational Models in Fracture Mechanics, in Homogenization and Applications to Material Sciences, (D. Cioranescu, A. Damlamian, P. Donato eds.), Gakuto, Gakkotosho, Tokio, Japan, 1997, p. 1-22. Zbl0904.73045MR1473974
  5. [5] L. Ambrosio - V.M. Tortorelli, Approximation of Functionals Depending on Jumps by Elliptic Functionals via r-Convergence, Comm. Pure Appl. Math.43 (1990), 999-1036. Zbl0722.49020MR1075076
  6. [6] L. Ambrosio-. M. Tortorelli, On the Approximation of Free Discontinuity Problems, Boll. Un. Mat. Ital.6-B (1992), 105-123. Zbl0776.49029MR1164940
  7. [7] A. Braides - G. Dal Maso, Nonlocal Approximation of the Mumford-Shah Functional, Calc. Var. Partial Differential Equations5 (1997), 293-322. Zbl0873.49009MR1450713
  8. [8] H. Brezis, "Opérateures Maximaux Monotones et Semigroups de Contraction dans les Espaces de Hilbert", North-Holland Mathematics Studies, n. 5 (1973). Zbl0252.47055MR348562
  9. [9] H. Brezis, Analyse Fonctionnelle: Theorie et Applications, Masson, 1987. Zbl0511.46001MR697382
  10. [10] A. Chambolle, Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations, SIAM J. Appl. Math.55 (1995), 827-863. Zbl0830.49015MR1331589
  11. [11] A. Chambolle - G. Dal Maso, Discrete Approximation of the Mumford-Shah Functional in Dimension two, RAIRO Modèl. Math. Anal. Numèr., to appear Zbl0943.49011MR1726478
  12. [12] A. Chambolle - F. Doveri, Minimizing Movements of the Mumford and Shah Energy, Discrete and Continuous Dynamical Systems, vol. 3, n. 2 (1997), 153-174. Zbl0948.35073MR1432071
  13. [13] G. Dal Maso, "An Introduction to Γ-convergence", Birkhäuser, Boston, 1993. Zbl0816.49001
  14. [14] E. De Giorgi - G. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal.108 (1989), 195-218. Zbl0682.49002MR1012174
  15. [15] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.58 (1975), 842-850. Zbl0339.49005MR448194
  16. [16] E. De Giorgi - A. Marino - M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.73 (1982), 6-14. Zbl0521.49011MR726279
  17. [17] L.C. Evans - R.F. Gariepy, "Measure Theory and Fine Properties of Functions", CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
  18. [18] M. Gobbino, Finite Difference Approximation of the Mumford-Shah Functional, Comm. Pure Appl. Math.51 (1998), 197-228. Zbl0888.49013MR1488299
  19. [19] A.A. Griffiths, The phenomenon of rupture and flow in solids, Phil. Trans. Royal Soc. London Ser.A221 (1920), 163-198. 
  20. [20] T. Ilmanen, Convergence of the Allen-Cahn Equation to Brakke's Motion by Mean Curvature, J. Differential Geom. 38 (1993), 417-461. Zbl0784.53035MR1237490
  21. [21] D. Mumford - J. Shah, Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problem, Comm. Pure Appl. Math.17 (1989), 577-685. Zbl0691.49036MR997568
  22. [22] W.P. Ziemer, "Weakly Differentiable Functions", Springer, Berlin, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.