Gradient flow for the one-dimensional Mumford-Shah functional
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)
- Volume: 27, Issue: 1, page 145-193
- ISSN: 0391-173X
Access Full Article
topHow to cite
topGobbino, Massimo. "Gradient flow for the one-dimensional Mumford-Shah functional." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.1 (1998): 145-193. <http://eudml.org/doc/84351>.
@article{Gobbino1998,
author = {Gobbino, Massimo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {-convergence; SBV functions; evolution equations; gradient flow; Mumford-Shah functional; heat equation},
language = {eng},
number = {1},
pages = {145-193},
publisher = {Scuola normale superiore},
title = {Gradient flow for the one-dimensional Mumford-Shah functional},
url = {http://eudml.org/doc/84351},
volume = {27},
year = {1998},
}
TY - JOUR
AU - Gobbino, Massimo
TI - Gradient flow for the one-dimensional Mumford-Shah functional
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 1
SP - 145
EP - 193
LA - eng
KW - -convergence; SBV functions; evolution equations; gradient flow; Mumford-Shah functional; heat equation
UR - http://eudml.org/doc/84351
ER -
References
top- [ 1 ] L. Ambrosio, A Compactness Theorem for a New Class of Functions of Bounded Variation, Boll. Un. Mat. Ital.3-B (1989), 857-881. Zbl0767.49001MR1032614
- [2] L. Ambrosio, Existence Theory for a New Class of Variational Problems, Arch. Rational Mech. Anal.111 (1990), 291-322. Zbl0711.49064MR1068374
- [3] L. Ambrosio, Free Discontinuity Problems and Special Functions with Bounded Variation, Proceedings ECM2Budapest1996, Progress in Mathematics168 (1998), 15-35. Zbl0909.49002MR1645795
- [4] L. Ambrosio - A. Braides, Energies in SB V and Variational Models in Fracture Mechanics, in Homogenization and Applications to Material Sciences, (D. Cioranescu, A. Damlamian, P. Donato eds.), Gakuto, Gakkotosho, Tokio, Japan, 1997, p. 1-22. Zbl0904.73045MR1473974
- [5] L. Ambrosio - V.M. Tortorelli, Approximation of Functionals Depending on Jumps by Elliptic Functionals via r-Convergence, Comm. Pure Appl. Math.43 (1990), 999-1036. Zbl0722.49020MR1075076
- [6] L. Ambrosio-. M. Tortorelli, On the Approximation of Free Discontinuity Problems, Boll. Un. Mat. Ital.6-B (1992), 105-123. Zbl0776.49029MR1164940
- [7] A. Braides - G. Dal Maso, Nonlocal Approximation of the Mumford-Shah Functional, Calc. Var. Partial Differential Equations5 (1997), 293-322. Zbl0873.49009MR1450713
- [8] H. Brezis, "Opérateures Maximaux Monotones et Semigroups de Contraction dans les Espaces de Hilbert", North-Holland Mathematics Studies, n. 5 (1973). Zbl0252.47055MR348562
- [9] H. Brezis, Analyse Fonctionnelle: Theorie et Applications, Masson, 1987. Zbl0511.46001MR697382
- [10] A. Chambolle, Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations, SIAM J. Appl. Math.55 (1995), 827-863. Zbl0830.49015MR1331589
- [11] A. Chambolle - G. Dal Maso, Discrete Approximation of the Mumford-Shah Functional in Dimension two, RAIRO Modèl. Math. Anal. Numèr., to appear Zbl0943.49011MR1726478
- [12] A. Chambolle - F. Doveri, Minimizing Movements of the Mumford and Shah Energy, Discrete and Continuous Dynamical Systems, vol. 3, n. 2 (1997), 153-174. Zbl0948.35073MR1432071
- [13] G. Dal Maso, "An Introduction to Γ-convergence", Birkhäuser, Boston, 1993. Zbl0816.49001
- [14] E. De Giorgi - G. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rational Mech. Anal.108 (1989), 195-218. Zbl0682.49002MR1012174
- [15] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.58 (1975), 842-850. Zbl0339.49005MR448194
- [16] E. De Giorgi - A. Marino - M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.73 (1982), 6-14. Zbl0521.49011MR726279
- [17] L.C. Evans - R.F. Gariepy, "Measure Theory and Fine Properties of Functions", CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
- [18] M. Gobbino, Finite Difference Approximation of the Mumford-Shah Functional, Comm. Pure Appl. Math.51 (1998), 197-228. Zbl0888.49013MR1488299
- [19] A.A. Griffiths, The phenomenon of rupture and flow in solids, Phil. Trans. Royal Soc. London Ser.A221 (1920), 163-198.
- [20] T. Ilmanen, Convergence of the Allen-Cahn Equation to Brakke's Motion by Mean Curvature, J. Differential Geom. 38 (1993), 417-461. Zbl0784.53035MR1237490
- [21] D. Mumford - J. Shah, Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problem, Comm. Pure Appl. Math.17 (1989), 577-685. Zbl0691.49036MR997568
- [22] W.P. Ziemer, "Weakly Differentiable Functions", Springer, Berlin, 1989. Zbl0692.46022MR1014685
Citations in EuDML Documents
top- Massimo Gobbino, Non-local approximation of functionals: variational and evolution problems
- Xiaobing Feng, Andreas Prohl, Analysis of gradient flow of a regularized Mumford-Shah functional for image segmentation and image inpainting
- Massimiliano Morini, Global calibrations for the non-homogeneous Mumford-Shah functional
- Xiaobing Feng, Andreas Prohl, Analysis of gradient flow of a regularized Mumford-Shah functional for image segmentation and image inpainting
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.