Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium

Massimiliano Berti; Philippe Bolle

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 27, Issue: 2, page 331-377
  • ISSN: 0391-173X

How to cite

top

Berti, Massimiliano, and Bolle, Philippe. "Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.2 (1998): 331-377. <http://eudml.org/doc/84361>.

@article{Berti1998,
author = {Berti, Massimiliano, Bolle, Philippe},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {autonomous Lagrangian systems; chaotic dynamics; zero energy level; homoclinic orbits; multibump homoclinic solutions; topological entropy},
language = {eng},
number = {2},
pages = {331-377},
publisher = {Scuola normale superiore},
title = {Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium},
url = {http://eudml.org/doc/84361},
volume = {27},
year = {1998},
}

TY - JOUR
AU - Berti, Massimiliano
AU - Bolle, Philippe
TI - Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 2
SP - 331
EP - 377
LA - eng
KW - autonomous Lagrangian systems; chaotic dynamics; zero energy level; homoclinic orbits; multibump homoclinic solutions; topological entropy
UR - http://eudml.org/doc/84361
ER -

References

top
  1. [1] A. Ambrosetti - M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach, C.R.Acad.Sci. Paris Sér. I-Math323 (1996), 753-758; Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998), 233-252. Zbl1004.37043MR1416171
  2. [2] H. Amann, A note on degree theory for gradient mappings, Proc. Amer. Math. Soc.84 (1982), 591-595. Zbl0501.58012MR660610
  3. [3] M. Berti - P. Bolle, Homoclinics and chaotic behaviour for perturbed second order systems, to appear in Ann. Mat. Pura Appl. Zbl0957.37019MR1746547
  4. [4] M. Berti - P. Bolle, Variational Construction of homoclinics and chaos in presence of a saddle-saddle equilibrium, Rend. Mat. Acc. Lincei9 (1998), 167-175. Zbl0921.58023MR1683007
  5. [5] S. Bolotin - P. Rabinowitz, A variational construction of chaotic trajectories for a Hamiltonian system on a torus, Boll. Un. Mat. Ital. 1-B8 (1998), 541-570. Zbl0957.70020MR1662325
  6. [6] B. Buffoni - E. Séré, A global condition for quasi-random behavior in a class of conservative systems, Comm. Pure Appl. Math.49 (1966), 285-305. Zbl0860.58027MR1374173
  7. [7] B. Buffoni - E. Séré, Chaotic dynamics in natural Lagrangian systems: a variational approach, preprint. Zbl0860.58027
  8. [8] R. Devaney, Homoclinic orbits in Hamiltonian systems, J. Differential Equations21 (1976), 431-438. Zbl0343.58005MR442990
  9. [9] R. Devaney, Transversal homoclinic orbits in an integrable Hamiltonian systems, Amer. J. Math.100 (1978), 631-642. Zbl0406.58019MR494258
  10. [10] H. Hofer, A note on the topological degree at a critical point of mountain-pass type, Proc. Amer. Math. Soc.90 (1984), 309-315. Zbl0545.58015MR727256
  11. [11] P.J. Holmes, Periodic, non-periodic and irregular motions in a Hamiltonian system, Rocky Mountain J. Math10 (1980), 679-693. Zbl0427.70026MR595097
  12. [12] E. Séré, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré Anal. Non Linéaire10 (1993), 561-590. Zbl0803.58013MR1249107
  13. [13] D.V. Turaev - L.P. Shil'nikov, On Hamiltonian systems with homoclinic curves of a saddle, Dokl. Akad. Nauk UzSSR304 (1989), 811-814. Zbl0689.58013MR988994
  14. [14] S. Wiggins, "Global Bifurcation and Chaos", Applied Mathematical Sciences, Vol.73, Springer-Verlag, 1988. Zbl0661.58001MR956468

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.