Global calibrations for the non-homogeneous Mumford-Shah functional
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2002)
- Volume: 1, Issue: 3, page 603-648
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topMorini, Massimiliano. "Global calibrations for the non-homogeneous Mumford-Shah functional." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 1.3 (2002): 603-648. <http://eudml.org/doc/84482>.
@article{Morini2002,
abstract = {Using a calibration method we prove that, if $\Gamma \subset \Omega $ is a closed regular hypersurface and if the function $g$ is discontinuous along $\Gamma $ and regular outside, then the function $u_\{\beta \}$ which solves\[ \left\lbrace \begin\{array\}\{ll\}\Delta u\_\{\beta \}=\beta (u\_\{\beta \}-g)& \text\{in $\Omega \setminus \Gamma $\}\\ \partial \_\{\nu \} u\_\{\beta \}=0 & \text\{on $\partial \Omega \cup \Gamma $\} \end\{array\}\right.\]is in turn discontinuous along $\Gamma $ and it is the unique absolute minimizer of the non-homogeneous Mumford-Shah functional\[ \int \_\{\Omega \setminus S\_u\}|\nabla u|^2\, dx +\{\mathcal \{H\}\}^\{n-1\}(S\_u)+\beta \int \_\{\Omega \setminus S\_u\}(u-g)^2\, dx, \]over $SBV(\Omega )$, for $\beta $ large enough. Applications of the result to the study of the gradient flow by the method of minimizing movements are shown.},
author = {Morini, Massimiliano},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {603-648},
publisher = {Scuola normale superiore},
title = {Global calibrations for the non-homogeneous Mumford-Shah functional},
url = {http://eudml.org/doc/84482},
volume = {1},
year = {2002},
}
TY - JOUR
AU - Morini, Massimiliano
TI - Global calibrations for the non-homogeneous Mumford-Shah functional
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2002
PB - Scuola normale superiore
VL - 1
IS - 3
SP - 603
EP - 648
AB - Using a calibration method we prove that, if $\Gamma \subset \Omega $ is a closed regular hypersurface and if the function $g$ is discontinuous along $\Gamma $ and regular outside, then the function $u_{\beta }$ which solves\[ \left\lbrace \begin{array}{ll}\Delta u_{\beta }=\beta (u_{\beta }-g)& \text{in $\Omega \setminus \Gamma $}\\ \partial _{\nu } u_{\beta }=0 & \text{on $\partial \Omega \cup \Gamma $} \end{array}\right.\]is in turn discontinuous along $\Gamma $ and it is the unique absolute minimizer of the non-homogeneous Mumford-Shah functional\[ \int _{\Omega \setminus S_u}|\nabla u|^2\, dx +{\mathcal {H}}^{n-1}(S_u)+\beta \int _{\Omega \setminus S_u}(u-g)^2\, dx, \]over $SBV(\Omega )$, for $\beta $ large enough. Applications of the result to the study of the gradient flow by the method of minimizing movements are shown.
LA - eng
UR - http://eudml.org/doc/84482
ER -
References
top- [1] G. Alberti – G. Bouchitté – G. Dal Maso, The calibration method for the Mumford-Shah functional, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 249-254. Zbl0948.49005MR1711069
- [2] G. Alberti – G. Bouchitté – G. Dal MasoG., The calibration method for the Mumford-Shah functional and free discontinuity problems, Preprint SISSA, Trieste, 2001. Zbl1015.49008MR2001706
- [3] L. Ambrosio, Movimenti minimizzanti, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Natur. 113 (1995), 191-246. Zbl0957.49029MR1387558
- [4] L. Ambrosio, A compactness theorem for a new class of variational problems, Boll. Un. Mat. It. 3-B (1989), 857-881. Zbl0767.49001MR1032614
- [5] L. Ambrosio – N. Fusco – D. Pallara, “Functions of Bounded Variation and Free-Discontinuity Problems”, Oxford University Press, Oxford, 2000. Zbl0957.49001MR1857292
- [6] A. Bonnet, On the regularity of edges in image segmentation, Ann. Inst. H. Poincaré, Anal. Non Linéaire. 13 (1996), 485-528. Zbl0883.49004MR1404319
- [7] A. Chambolle – F. Doveri, Minimizing movements of the Mumford-Shah energy, Discrete Contin. Dynam. Systems 3 (1997), 153-174. Zbl0948.35073MR1432071
- [8] G. Dal Maso – M. G. Mora – M. Morini, Local calibrations for minimizers of the Mumford-Shah functional with rectilinear discontinuity set, J. Math. Pures Appl. 79 (2000), 141-162. Zbl0962.49013MR1749156
- [9] E. De Giorgi – L. Ambrosio, Un nuovo funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), 199-210. Zbl0715.49014MR1152641
- [10] M. C. Delfour – J. P. Zolésio, Shape Analysis via oriented distance functions, J. Funct. Anal. 123 (1994), 129-201. Zbl0814.49032MR1279299
- [11] T. De Pauw – D. Smets, On explicit solutions for the problem of Mumford and Shah, Comm. Contemp. Math. 1 (1999), 201-212. Zbl0953.49022MR1696099
- [12] M. Gobbino, Gradient flow for the one-dimensional Mumford-Shah functional, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 145-193. Zbl0931.49010MR1658873
- [13] P. Grisvard, “Majorations en norme du maximum de la résolvante du laplacien dans un polygone. Nonlinear partial differential equations and their applications”, Collège de France Seminar, Vol. XII (Paris, 1991-1993), 87-96, Pitman Res. Zbl0811.35022MR1291845
- [14] P. Grisvard, “Elliptic Problems in Nonsmooth Domains”, Monographs and Studies in Mathematics 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. Zbl0695.35060MR775683
- [15] A. Lunardi, “Analytic Semigroups and Optimal Regularity in Parabolic Problems”, Progress in Nonlinear Differential Equations and Their Applications, vol. 16, Birkhäuser Verlag, Basel, 1995. Zbl0816.35001MR1329547
- [16] M. G. Mora, Local calibrations for minimizers of the Mumford-Shah functional with a triple junction, Preprint SISSA, Trieste, 2001. Zbl1017.49018MR1901148
- [17] M. G. Mora – M. Morini, Functional depending on curvatures with constraints, Rend. Sem. Mat. Univ. Padova 104 (2000), 173-199. Zbl1017.49019MR1809356
- [18] M. G. Mora – M. Morini, Local calibrations for minimizers of the Mumford-Shah functional with a regular discontinuity set, To appear on Ann. Inst. H. Poincaré, Anal. non linéaire. Zbl1052.49018MR1841127
- [19] D. Mumford – J. Shah, Boundary detection by minimizing functionals, I, Proc. IEEE Conf. on Computer Vision and Pattern Recognition (San Francisco, 1985).
- [20] D. Mumford – J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math. 42 (1989), 577-685. Zbl0691.49036MR997568
- [21] T. J. Richardson, Limit theorems for a variational problem arising in computer vision, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 1-49. Zbl0757.49027MR1183756
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.