On the jacobian variety of some algebraic curves
Compositio Mathematica (1980)
- Volume: 42, Issue: 3, page 345-359
- ISSN: 0010-437X
Access Full Article
topHow to cite
topGreenberg, Ralph. "On the jacobian variety of some algebraic curves." Compositio Mathematica 42.3 (1980): 345-359. <http://eudml.org/doc/89483>.
@article{Greenberg1980,
author = {Greenberg, Ralph},
journal = {Compositio Mathematica},
keywords = {algebraic curve; Jacobian variety; group of rational points; points of p- power order},
language = {eng},
number = {3},
pages = {345-359},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {On the jacobian variety of some algebraic curves},
url = {http://eudml.org/doc/89483},
volume = {42},
year = {1980},
}
TY - JOUR
AU - Greenberg, Ralph
TI - On the jacobian variety of some algebraic curves
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 42
IS - 3
SP - 345
EP - 359
LA - eng
KW - algebraic curve; Jacobian variety; group of rational points; points of p- power order
UR - http://eudml.org/doc/89483
ER -
References
top- [1] E. Artin and H. Hasse: Die beiden Erganzungssatze zum Reziprozitatsgesetz der ln-ten Potenzreste im Korper der ~n-ten Finheitswurzeln. Abh. Math. Sem. Univ. Hamburg6 (1928) 146-162. Zbl54.0191.05JFM54.0191.05
- [2] A. Brumer: On the units of algebraic number fields. Mathematika14 (1967) 121-124. Zbl0171.01105MR220694
- [3] B. Gross and D. Rohrlich: Some Results on the Mordell-Weil Group of the Jacobian of the Fermat Curve. Inventiones, Math.44 (1978) 201-224. Zbl0369.14011MR491708
- [4] K. Iwasawa: On Zl-extensions of algebraic number fields. Ann. of Math.98 (1973) 246-326. Zbl0285.12008MR349627
- [5] K. Iwasawa: A note on cyclotomic fields. Inventiones Math.36 (1976) 115-123. Zbl0342.12004MR432587
- [6] K. Iwasawa: A note on Jacobi sums, Symposia Mathematica, Vol.15 (1975), 447-459. Zbl0324.12007MR384747
- [7] W. Johnson: Irregular primes and cyclotomic invariants. Math. Comp.29 (1975) 113-120. Zbl0302.10020MR376606
- [8] N. Koblitz and D. Rohrlich: Simple Factors in the Jacobian of a Fermat curve, (to appear in Canadian Journ. of Math.). Zbl0399.14023MR511556
- [9] G. Shimura and Y. Taniyama: Complex Multiplication of Abelian Varieties and its Applications to Number Theory. Tokyo, Math. Soc. Japan 1961. Zbl0112.03502MR125113
- [10] S. Wagstaff: The Irregular Primes to 125000. Math. Comp.32 (1978) 583-591. Zbl0377.10002MR491465
Citations in EuDML Documents
top- Masato Kurihara, Some remarks on conjectures about cyclotomic fields and -groups of
- Chong-Hai Lim, Endomorphisms of jacobian varieties of Fermat curves
- Robert F. Coleman, Torsion points on fermat curves
- Pavlos Tzermias, Arithmetic of cyclic quotients of the Fermat quintic
- David Grant, A proof of quintic reciprocity using the arithmetic of y² = x⁵ + 1/4
- David Grant, Delphy Shaulis, The cuspidal torsion packet on hyperelliptic Fermat quotients
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.