Families of supersingular abelian surfaces
Compositio Mathematica (1987)
- Volume: 62, Issue: 2, page 107-167
- ISSN: 0010-437X
Access Full Article
topHow to cite
topKatsura, Toshiyuki, and Oort, Frans. "Families of supersingular abelian surfaces." Compositio Mathematica 62.2 (1987): 107-167. <http://eudml.org/doc/89837>.
@article{Katsura1987,
author = {Katsura, Toshiyuki, Oort, Frans},
journal = {Compositio Mathematica},
keywords = {supersingular elliptic curve; standard divisor; Galois covering; principally polarized supersingular abelian surfaces; definite quaternion algebra; number of automorphisms of abelian surfaces},
language = {eng},
number = {2},
pages = {107-167},
publisher = {Martinus Nijhoff Publishers},
title = {Families of supersingular abelian surfaces},
url = {http://eudml.org/doc/89837},
volume = {62},
year = {1987},
}
TY - JOUR
AU - Katsura, Toshiyuki
AU - Oort, Frans
TI - Families of supersingular abelian surfaces
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 62
IS - 2
SP - 107
EP - 167
LA - eng
KW - supersingular elliptic curve; standard divisor; Galois covering; principally polarized supersingular abelian surfaces; definite quaternion algebra; number of automorphisms of abelian surfaces
UR - http://eudml.org/doc/89837
ER -
References
top- 1 M. Deuring: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Univ. Hamburg14 (1941) 197-272. Zbl0025.02003MR5125JFM67.0107.01
- 2 M. Eichler: Über die Idealklassenzahl total definiter Quaternionenalgebren. Math. Z.43 (1938) 102-109. Zbl0017.15003MR1545717JFM63.0093.02
- 3 T. Ekedahl: On supersingular curves and abelian varieties. Prépublications Univ. de Paris-Sud, Orsay (1985). Zbl0641.14007
- 4 K. Hashimoto and T. Ibukiyama: On the class numbers of positive definite binary quaternion hermitian forms (I). J. Fac. Sci. Univ. Tokyo sect. IA, 27 (1980), 549-601(II) ibid. 28 (1981) 695-699. Zbl0493.10030MR603952
- 5 T. Ibukiyama, T. Katsura and F. Oort: Supersingular curves of genus two and class numbers. Comp. Math.57 (1986) 127-152. Zbl0589.14028MR827350
- 6 J. Igusa: Class number of a definite quaternion with prime discriminant. Proc. Nat. Acad. Sci. U.S.A.44 (1958) 312-314. Zbl0081.03601MR98728
- 7 J. Igusa: Arithmetic variety of moduli for genus two. Ann. of Math.72 (1960) 612-649. Zbl0122.39002MR114819
- 8 T. Katsura and F. Oort: Supersingular abelian varieties of dimension two or three and class numbers. To appear in Advanced Studies in Pure Math. Zbl0656.14025MR946242
- 9 N. Koblitz: p-adic variation of the zeta-function over families defined over finite fields. Comp. Math.31 (1975) 119-218. Zbl0332.14008MR414557
- 10 L. Moret-Bailly: Polarizations de degré 4 sur les surfaces abéliennes. C.R. Acad. Sci. Paris289 (1979) 787-790. Zbl0432.14025MR558798
- 11 L. Moret-Bailly: Familles de courbes et de variétés abéliennes sur P1. Astérisque86 (1981) 109-140. Zbl0515.14006
- 12 D. Mumford: Abelian varieties. Oxford Univ. Press (1970). Zbl0223.14022MR282985
- 13 D. Mumford and J. Fogarty: Geometric invariant theory (second enlarged edition). Berlin-Heidelberg- New York: Springer-Verlag (1982). Zbl0504.14008MR719371
- 14 M.N. Narasimhan and M.V. Nori: Polarizations on an abelian variety. Geometry and analysis, Indian Acad. Sci. Bangalore (1980) 125-128. Zbl0509.14047
- 15 F. Oort: Subvarieties of moduli spaces. Invent. Math.24 (1974) 95-119. Zbl0259.14011MR424813
- 16 F. Oort: Which abelian surfaces are products of elliptic curves? Math. Ann.214 (1975) 35-47. Zbl0283.14007MR364264
- 17 H. Pinkham: Singularités de Klein, I. In Séminaire sur les singularités des surfaces. Lecture Notes in Math.777, pp. 1-9. Berlin- Heidelberg-New York: Springer-Verlag (1980). Zbl0459.14008MR579026
- 18 G. Shimura: Arithmetic of alternating forms and quaternion hermitian forms. J. Math. Soc. Japan15 (1963) 33-65. Zbl0121.28102MR146172
- 19 T. Shioda: Supersingular K3 surfaces. Lecture Notes in Math.732, pp. 564-591. Berlin- Heidelberg-New York: Springer-Verlag (1979). Zbl0414.14019MR555718
- 20 W.C. Waterhouse: Abelian varieties over finite fields. Ann. Sci. Éc. Norm. Sup.4e série, t.2 (1969) 521-560. Zbl0188.53001MR265369
- 21 A. Weil: Zum Beweis des Torellischen Satzes. Nachr. Acad. Wiss. Göttingen Math. Phys. K1 (1957) 33-53. Zbl0079.37002MR89483
Citations in EuDML Documents
top- M. Van der Put, Les courbes de Shimura
- Tomoyoshi Ibukiyama, Toshiyuki Katsura, On the field of definition of superspecial polarized abelian varieties and type numbers
- Stephen S. Kudla, Michael Rapoport, Cycles on Siegel threefolds and derivatives of Eisenstein series
- Everett W. Howe, Enric Nart, Christophe Ritzenthaler, Jacobians in isogeny classes of abelian surfaces over finite fields
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.