Exact boundary controllability of 3-D Euler equation
ESAIM: Control, Optimisation and Calculus of Variations (2000)
- Volume: 5, page 1-44
- ISSN: 1292-8119
Access Full Article
topHow to cite
topGlass, Olivier. "Exact boundary controllability of 3-D Euler equation." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 1-44. <http://eudml.org/doc/90567>.
@article{Glass2000,
author = {Glass, Olivier},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {boundary controllability; exact controllability; control of fluid flow; 3-D Euler equation},
language = {eng},
pages = {1-44},
publisher = {EDP Sciences},
title = {Exact boundary controllability of 3-D Euler equation},
url = {http://eudml.org/doc/90567},
volume = {5},
year = {2000},
}
TY - JOUR
AU - Glass, Olivier
TI - Exact boundary controllability of 3-D Euler equation
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 1
EP - 44
LA - eng
KW - boundary controllability; exact controllability; control of fluid flow; 3-D Euler equation
UR - http://eudml.org/doc/90567
ER -
References
top- [1] C. Bardos and U. Frisch, Finite-time regularity for bounded and unbounded ideal incompressible fluids using Hölder estimates, in Proceedings of the conference held at the university of Paris-Sud Orsay, France. Springer-Verlag, Lectures Notes in Math. 565 ( 1975) 1-13. Zbl0355.76016MR467034
- [2] J.-M. Coron, Global Asymptotic Stabilization for controllable systems without drift. Math. Control Signals Systems 5 ( 1992) 295-312. Zbl0760.93067MR1164379
- [3] J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317 ( 1993) 271-276. Zbl0781.76013MR1233425
- [4] J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 ( 1996) 155-188. Zbl0848.76013MR1380673
- [5] J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM Control Optim. Calc. Var. 1 ( 1996) 35-75. http://www.emath.fr/cocv/. Zbl0872.93040MR1393067
- [6] O. Glass, Exact boundary controllability of 3-D Euler equation of perfect incompressible fluids. C. R. Acad. Sci. Paris Sér. I Math. 325 ( 1997) 987-992. Zbl0897.76014MR1485616
- [7] O. Glass, Contrôlabilité de l'équation d'Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire Équations aux Dérivées Partielles, 1997-1998, École polytechnique, Centre de Mathématiques, exposé XV. Zbl1175.93030MR1660528
- [8] P. Hermann and H. Kersten, Über die stetige Abhängigkeit der Lösung des Neumann-Problems für die Prae-Maxwellschen Gleichungen von ihren Randdaten. Arch. Math. (Basel) 36 ( 1981) 79-82. Zbl0449.35031MR612240
- [9] A.V. Kazhikov, Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid. PMM USSR 44 ( 1981) 672-674. Zbl0468.76004
- [10] J.-L. Lions, Are there connections between turbulence and controllability?, 9th INRIA International Conference, Antibes (June 12-15, 1990).
- [11] R. Temam, Navier-Stokes equations and numerical analysis. North-Holland Pub. ( 1979). Zbl0426.35003MR603444
Citations in EuDML Documents
top- Hayk Nersisyan, Controllability of 3D incompressible Euler equations by a finite-dimensional external force
- Rodrigo Lecaros, Lionel Rosier, Control of underwater vehicles in inviscid fluids
- Olivier Glass, Existence of solutions for the two-dimensional stationary Euler system for ideal fluids with arbitrary force
- S. Guerrero, O. Yu. Imanuvilov, Remarks on global controllability for the Burgers equation with two control forces
- Armen Shirikyan, Exact controllability in projections for three-dimensional Navier–Stokes equations
- Jaime H. Ortega, Lionel Rosier, Takéo Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid
- Olivier Glass, A controllability result for the -D isentropic Euler equation
- Karine Beauchard, Controllability of Schrödinger equations
- Sylvain Ervedoza, Local exact controllability for the -d compressible Navier-Stokes equations
- Jaime H. Ortega, Lionel Rosier, Takéo Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.