The equivalence of -groupoids and crossed complexes

Ronald Brown; Philip J. Higgins

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1981)

  • Volume: 22, Issue: 4, page 371-386
  • ISSN: 1245-530X

How to cite

top

Brown, Ronald, and Higgins, Philip J.. "The equivalence of $\infty $-groupoids and crossed complexes." Cahiers de Topologie et Géométrie Différentielle Catégoriques 22.4 (1981): 371-386. <http://eudml.org/doc/91280>.

@article{Brown1981,
author = {Brown, Ronald, Higgins, Philip J.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {n-fold categories; equivalence of categories; infinity-groupoids; crossed complexes; omega-groupoids},
language = {eng},
number = {4},
pages = {371-386},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {The equivalence of $\infty $-groupoids and crossed complexes},
url = {http://eudml.org/doc/91280},
volume = {22},
year = {1981},
}

TY - JOUR
AU - Brown, Ronald
AU - Higgins, Philip J.
TI - The equivalence of $\infty $-groupoids and crossed complexes
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1981
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 22
IS - 4
SP - 371
EP - 386
LA - eng
KW - n-fold categories; equivalence of categories; infinity-groupoids; crossed complexes; omega-groupoids
UR - http://eudml.org/doc/91280
ER -

References

top
  1. 1 R. Brown& P.J. Higgins, On the algebra of cubes, J. Pure & Appl. Algebra, 21 (1981), 233- 260. Zbl0468.55007MR617135
  2. 2 R. Brown& P.J. Higgins, Colimit theorems for relative homotopy groups, J. Pure & Appl. Algebra22 (1981), 11-41. Zbl0475.55009MR621285
  3. 3 R. Brown & P.J. Higgins, The equivalence of ω-groupoids and cubical T-complexe s, This issue. 
  4. 4 R. Brown & C.B. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Kon. Akad. v. Wet.79 (1976), 296. Zbl0333.55011MR419643
  5. 5 R. Brown & C.B. Spencer, Double groupoids and crossed modules,Cahiers Top. et Géom. Diff.XVII-4 (1976), 343-362. Zbl0344.18004MR440553
  6. 6 M.K. Dakin, Kan complexes and multiple groupoid structures, Ph. D. Thesis University of Wale s, 1977. Zbl0566.55010MR766238
  7. 7 A. Dold, Homology of symmetric products and other functors of complexes, Ann. of Math.68 (1958), 54 - 80. Zbl0082.37701MR97057
  8. 8 A. & C. Ehresmann, Multiple functors II, III, Cahiers Top. et Géom. Diff.xx (1978), 295-333, 387-443. Zbl0415.18006
  9. 9 D.M. Kan, Functors involving c.s.s. complexes, Trans. A.M.S.87 (1958), 330. Zbl0090.39001MR131873
  10. 10 C.B. Sp Encer, An abstract setting for homotopy pushouts and pullbacks, Cahiers Top. et Géom. Diff. XVIII-4 (1977), 409-430. Zbl0378.18008MR486054
  11. 11 O. Wyler, Multiple functor categories, Mimeographed Note s, Camegie-Mellon University, 1972. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.