Structures defined by finite limits in the enriched context, I

G. M. Kelly

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1982)

  • Volume: 23, Issue: 1, page 3-42
  • ISSN: 1245-530X

How to cite

top

Kelly, G. M.. "Structures defined by finite limits in the enriched context, I." Cahiers de Topologie et Géométrie Différentielle Catégoriques 23.1 (1982): 3-42. <http://eudml.org/doc/91287>.

@article{Kelly1982,
author = {Kelly, G. M.},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {locally finitely presentable categories; symmetric monoidal closed category; finitary algebraic theory; enriched category theory; cocomplete; strong generator; locally presentable category; co- wellpowered},
language = {eng},
number = {1},
pages = {3-42},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Structures defined by finite limits in the enriched context, I},
url = {http://eudml.org/doc/91287},
volume = {23},
year = {1982},
}

TY - JOUR
AU - Kelly, G. M.
TI - Structures defined by finite limits in the enriched context, I
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1982
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 23
IS - 1
SP - 3
EP - 42
LA - eng
KW - locally finitely presentable categories; symmetric monoidal closed category; finitary algebraic theory; enriched category theory; cocomplete; strong generator; locally presentable category; co- wellpowered
UR - http://eudml.org/doc/91287
ER -

References

top
  1. 1 A. ( Bastiani) and C. Ehresmann, Categories of sketched structures, Cahiers Topo. et Géom. Diff.13 (1972), 103-214. Zbl0263.18009MR323856
  2. 2 J.B. Enabou, Structures algébriques dans les catégories, Cahiers Topo. et Géom. Diff.10 (1968), 1-126. Zbl0162.32602MR244335
  3. 3 M. Coste, Localisation dans les catégories de modèles, Thèse, Université Pari s-Nord, 1977, 
  4. 4 Y. Diers, Type de densité d'une sous-catégorie pleine, Ann. Soc. Scient. Bruxelles90 (1976), 25- 47. Zbl0318.18005MR396716
  5. 5 C. Ehresmann, Esquisses et types de structures algébriques, Bul. Inst. Polit. Iaşi14 (1968), 1- 14. Zbl0196.03102MR238918
  6. 6 P.J. Freyd, Aspects of topoi, Bull. Austral. Math. Soc.7 (1976), 1-76 and 467-480. Zbl0252.18001
  7. 7 P. Gabriel and F. Ulmer, Lokal präsentierbare Kategorien, Lecture Notes in Math.221, Springer (1971). Zbl0225.18004MR327863
  8. 8 G.M. Kelly, Monomorphisms, epimorphisms, and pullbacks, J. Austral. Math. Soc.9 (1969), 124- 142. Zbl0169.32604MR240161
  9. 9 G.M. Kelly, A unified treatment of transfinite constructions, Bull. Austral. Math. Soc.22 (1980), 1-83. Zbl0437.18004MR589937
  10. [*] G.M. Kelly, The basic concepts of enriched category theory, Cambridge Univ. Press, 1982. Zbl0478.18005MR651714
  11. 10. G.M. Kelly, Categories with structure - biadjoints for algebraic functors (to appear). 
  12. 11 F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. USA50 (1963), 869-872. Zbl0119.25901MR158921
  13. 12 F.E.J. Linton, Autonomous equational categories, J. Math. Mech.15 (1966), 637-642. Zbl0146.25104MR190205
  14. 13 M. Makkai and G.E. Reyes, First Order Categorical Logic, Lecture Notes in Math.611, Springer (1977). Zbl0357.18002MR505486

Citations in EuDML Documents

top
  1. G. M. Kelly, A note on the generalized reflexion of Guitart and Lair
  2. G. M. Kelly, A survey of totality for enriched and ordinary categories
  3. Francis Borceux, Carmen Quinteiro, A theory of enriched sheaves
  4. F. Borceux, J. Rosický, On filtered weighted colimits of presheaves
  5. Alexandru Chirvasitu, Metric enrichment, finite generation, and the path coreflection
  6. John W. Gray, Executable specifications for data-type constructors
  7. René Guitart, On the geometry of computations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.