Calcul pratique du treillis de Galois d'une correspondance

J. P. Bordat

Mathématiques et Sciences Humaines (1986)

  • Volume: 96, page 31-47
  • ISSN: 0987-6936

How to cite

top

Bordat, J. P.. "Calcul pratique du treillis de Galois d'une correspondance." Mathématiques et Sciences Humaines 96 (1986): 31-47. <http://eudml.org/doc/94333>.

@article{Bordat1986,
author = {Bordat, J. P.},
journal = {Mathématiques et Sciences Humaines},
keywords = {algorithmic solutions; ordered graphs; Galois lattice; algorithms; transitive closure; tripartite graph; complexity},
language = {fre},
pages = {31-47},
publisher = {Ecole Pratique des hautes études, Centre de mathématique sociale et de statistique},
title = {Calcul pratique du treillis de Galois d'une correspondance},
url = {http://eudml.org/doc/94333},
volume = {96},
year = {1986},
}

TY - JOUR
AU - Bordat, J. P.
TI - Calcul pratique du treillis de Galois d'une correspondance
JO - Mathématiques et Sciences Humaines
PY - 1986
PB - Ecole Pratique des hautes études, Centre de mathématique sociale et de statistique
VL - 96
SP - 31
EP - 47
LA - fre
KW - algorithmic solutions; ordered graphs; Galois lattice; algorithms; transitive closure; tripartite graph; complexity
UR - http://eudml.org/doc/94333
ER -

References

top
  1. 1 - Aho A.V., Hopcroft J.E., Ullmann J.D., Data structures and algorithms, Reading, Addison-Wesley, 1983. Zbl0487.68005MR666695
  2. 2 - Barbut M., Monjardet B., Ordre et Classification, Algèbre et Combinatoire,2 tomes, Paris, Hachette, 1970. Zbl0267.06001
  3. 3 - Berge C., Graphes et hypergraphes, Paris, Dunod, 1970. Zbl0213.25702MR357173
  4. 4 - Chein M., "Algorithme de recherche des sous-matrices premières d' une matrice ", Bull. Math. Soc. Sci. Math. R. S. Roumanie, tome 13 (61)(1969), 21-25. Zbl0209.06401MR263225
  5. 5 - Fay G., "An algorithm for finite Galois connections", CL & CL-Comput. Linguist. Comput. Lang.10 (1975), 99-123. Zbl0359.06009MR429692
  6. 6 - Fischer M.J., Meyer A.R., "Boolean matrix multiplication and transitive closure", Proc. 12th Annual Symposium on Switching and Automata Theory (1971), 129-131. 
  7. 7 - Ganter B., "Two basic algorithms in concept analysis", Preprint nº 831, Technische HochschuleDarmstadt (1984). Zbl1274.68484MR949457
  8. 8 - Habib M., Hamroun M., Jegou R.," Linear equivalences for transitivity in graphs", Rapp. Rech. nº 83-10, E.N.S.M. Saint-Etienne (1983). 
  9. 9 - Haralick R.M., "The diclique representation and decomposition of binary relations", J. Assoc. Comput. Mach.21 (1974), 356-366. Zbl0293.94020MR472598
  10. 10 - Karp R.M., "Complexity of computer computations", Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown heights, N. Y. (1972), 85-103. MR378476
  11. 11 - Knuth D.E., Big Omicron and Big Omega and Big Theta, Sigact News (1976), 18-25. 
  12. 12 - Munro I., "Efficient determination of the transitive closure of a directed graph ", Information Processing letters, 1 (1971), 56-58. Zbl0221.68030
  13. 13 - Norris E.M., "An algorithm for computing the maximal rectangles of a binary relation", Rev. Roum. Math. Pures Appl., 23, nº 2 (1978), 243-250. Zbl0389.05003MR505912
  14. 14 - Wille R., "Restructuring lattice theory : an approach based on hierarchies of concepts" in Ordered sets (edit. I. Rival), Reidel, Dordrecht -Boston (1982), 445-470. Zbl0491.06008MR661303
  15. 15 - Wille R., "Line diagrams of hierarchical concept systems", Int. Classif.11, 2 (1984), 77-86. 

Citations in EuDML Documents

top
  1. Anne Berry, Jean-Paul Bordat, Orthotreillis et séparabilité dans un graphe non orienté
  2. Marie-Catherine Daniel-Vatonne, Colin de la Higuera, Les termes : un modèle algébrique de représentation et de structuration de données symboliques
  3. A. Guénoche, Construction du treillis de Galois d'une relation binaire
  4. Engelbert Mephu Nguifo, Une nouvelle approche basée sur le treillis de Galois, pour l'apprentissage de concepts
  5. Jean-Marc Bernard, Sébastien Poitrenaud, L' analyse implicative bayésienne multivariée d'un questionnaire binaire : quasi-implications et treillis de Galois simplifié
  6. A. Guenoche, B. Monjardet, Méthodes ordinales et combinatoires en analyse des données

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.