Complex analytic geometry of complex parallelizable manifolds

Jörg Winkelmann

Mémoires de la Société Mathématique de France (1998)

  • Volume: 72-73, page III1-X216
  • ISSN: 0249-633X

How to cite

top

Winkelmann, Jörg. "Complex analytic geometry of complex parallelizable manifolds." Mémoires de la Société Mathématique de France 72-73 (1998): III1-X216. <http://eudml.org/doc/94924>.

@article{Winkelmann1998,
author = {Winkelmann, Jörg},
journal = {Mémoires de la Société Mathématique de France},
language = {eng},
pages = {III1-X216},
publisher = {Société mathématique de France},
title = {Complex analytic geometry of complex parallelizable manifolds},
url = {http://eudml.org/doc/94924},
volume = {72-73},
year = {1998},
}

TY - JOUR
AU - Winkelmann, Jörg
TI - Complex analytic geometry of complex parallelizable manifolds
JO - Mémoires de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 72-73
SP - III1
EP - X216
LA - eng
UR - http://eudml.org/doc/94924
ER -

References

top
  1. [1] Akhiezer, D.N. : Invariant meromorphic functions on complex semisimple Lie groups. Invent. Math. 65, n° 3, 325-329 (1981/1982) Zbl0479.32010MR83h:32030
  2. [2] Akhiezer, D.N. : Lie Groups actions in complex analysis. Aspects of Mathematics. Vieweg 1995 Zbl0845.22001MR96g:32051
  3. [3] Akhiezer, D.N. : Group actions on the Dolbeault cohomology of homogeneous manifolds. Math. Z. (1996). Zbl0891.32007
  4. [4] Atiyah, M. : On the Krull-Schmidt theorem with applications to sheaves. Bull. Soc. Math. France 84, 307-317 (1956) Zbl0072.18101MR19,172b
  5. [5] Atiyah, M. : Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85, 181-207 (1957) Zbl0078.16002MR19,172c
  6. [6] Atiyah, M. : K-Theory. Benjamin 1967 Zbl0159.53302MR36 #7130
  7. [7] Atiyah, M. ; Rees, F. : Vector Bundles on Projective 3-space. Invent. Math. 36, 131-153 (1976) Zbl0332.32020MR54 #7870
  8. [8] Baker, A. : Transcendental Number Theory. Cambridge University Press 1975 Zbl0297.10013MR54 #10163
  9. [9] Barlet, D. : Familles analytiques de cycles paramétrées par un espace analytique réduit. LN 481, 1-158. Springer 1975 MR53 #3347
  10. [10] Barth, W. ; Otte, M. : Über fast-uniforme Untergruppen komplexer Liegruppen und auflösbare komplexe Mannigfaltigkeiten. Comm. Math. Helv. 44, 269-281 (1969) Zbl0172.37804MR40 #6597
  11. [11] Barth, W. ; Otte, M. : Invariante Holomorphe Funktionen auf reduktiven Liegruppen. Math. Ann. 201, 91-112 (1973) Zbl0253.32018MR51 #13300
  12. [12] Berteloot, F. ; Oeljeklaus, K. : Invariant Plurisubharmonic Functions and Hypersurfaces on Semisimple Complex Lie Groups. Math. Ann. 281, 513-530 (1988) Zbl0653.32029MR89i:32065
  13. [13] Bierstone, E. ; Milman, P.D. : Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128, 207-302 (1997) Zbl0896.14006MR98e:14010
  14. [14] Blanchard, A. : Sur les variétés analytiques complexes. Ann. Sci. ecole norm. sup. 73, 157-202 (1956) Zbl0073.37503MR19,316e
  15. [15] Bochner, S. ; Montgomery, D. : Groups on analytic manifolds. Ann. of Math. 48 (2), 659-669 (1947). Zbl0030.07501MR9,174f
  16. [16] Boothby, W. ; Wang, H. : On the finite Subgroups of Connected Lie Groups. Comm. Math. Helv. 39, 281-294 (1964) Zbl0138.03001MR31 #4856
  17. [17] Borel, A. : Density properties of certain subgroups of semisimple groups without compact components. Ann. of Math. 72, 179-188 (1960) Zbl0094.24901MR23 #A964
  18. [18] Borel, A. : Compact Clifford Klein forms of symmetric spaces. Topology 2, 111-122 (1963) Zbl0116.38603MR26 #3823
  19. [19] Borel, A. : Introduction aux groupes arithmetiques. Hermann 1969 Zbl0186.33202MR39 #5577
  20. [20] Borel, A. : Linear algebraic groups. Second Enlarged Edition. Springer 1991 Zbl0726.20030MR92d:20001
  21. [21] Borel, A. ; Harish-Chandra : Arithmetic subgroups of algebraic groups. Ann. Math. 75, 485-535 (1962) Zbl0107.14804MR26 #5081
  22. [22] Borel, A. ; Remmert, R. : Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann. 145, 429-439 (1962) Zbl0111.18001MR26 #3088
  23. [23] Borel, A. ; Tits, J. : Groupes Reductifs. IHES 27, 55-152 (1965) Zbl0145.17402MR34 #7527
  24. [24] Bourbaki, N. : Intégration. Ch. VII. Hermann, Paris. 1960 
  25. [25] Brody, R. : Compact manifolds and hyperbolicity. T.A.M.S. 235, 213-219 (1978) Zbl0416.32013MR57 #10010
  26. [26] Campana, F. : On Twistor Spaces of the class C.J. Diff. Geo. 33, 541-549 (1991) Zbl0694.32017MR92g:32059
  27. [27] Campana, F. : Remarques sur le revêtement universel des variétés Kählériennes compactes. Bull. Soc. math. France. 122, 255-284 (1994) Zbl0810.32013MR95f:32036
  28. [28] Campana, F. : Connexité abélienne des variétés kählériennes compactes. C.R. Acad. Sci. Paris, t. 325, Série I, 755-758 (1997) Zbl0899.53050MR98m:32044
  29. [29] Capocasa, F. ; Catanese, F. : Periodic meromorphic functions. Acta Math. 166, 27-68 (1991) Zbl0719.32005MR92e:14043
  30. [30] Cartan, E. : La topologie des groupes de Lie. Enseign. math. 35, 177-200 (1936) Zbl0015.20401JFM62.0441.02
  31. [31] Cernousov, V.I. : On the Hasse-principle for groups of type E8. Dokl. Akad. Nauk. SSSR 306, 1059-1063 (1989) Translation: Sov. Math. Dokl. 39, 592-596 (1989) Zbl0703.20040
  32. [32] Cordero, L. ; Fernandez, M. ; Gray, A. : La suite spectrale de Frölicher et les nilvariétés complexes compactes. C.R. Acad. Sci. Paris 305, 753-756 (1987) Zbl0627.32025MR89c:32081
  33. [33] Cordero, L. ; Fernandez, M. ; Gray, A. : The Froehlicher spectral sequence for compact nilmanifolds. Ill. J. Math. 35, no. 1, 56-67 (1991) Zbl0721.58003MR92b:53112
  34. [34] Corlette, K. : Archimedean superrigidity and hyperbolic geometry. Ann. of Math. 135, 165-182 (1992) Zbl0768.53025MR92m:57048
  35. [35] Curtis, C. ; Reiner, I. : Representation Theory of Finite Groups and associative algebras. Interscience 1962. (Reprinted 1988 in the Wiley Classics Library series.) Zbl0634.20001
  36. [36] Dixmier, J. ; Lister, W.G. : Derivations of nilpotent Lie algebras Proc. A.M.S. 8, 155-158 (1957) Zbl0079.04802MR18,659a
  37. [37] Dold, A. : Lectures on Algebraic Topology. Springer Berlin Heidelberg New York 1972 Zbl0234.55001MR54 #3685
  38. [38] Dynkin, E.B. : Semisimple subalgebras of semisimple Lie algebras. Mat. Sbornik N.S. 30 (72), 349-462, Moskva (1952) Zbl0048.01701MR13,904c
  39. [39] Dynkin, E.B. : Maximal subgroups of classical groups. Trudy Moskov. Mat. Ob. 1, 39-66, Moskva (1952) Zbl0048.01601MR14,244d
  40. [40] Forster, O. ; Knorr, K. : Über die Deformationen von Vektorraumbündeln auf kompakten komplexen Räumen. Math. Ann. 209, 291-346 (1974) Zbl0272.32004MR51 #10695
  41. [41] Frölicher : Relations between the cohomology groups of Dolbeault and topological invariants. Proc. Nat. Acad. Sci. U.S.A. 41, 641-644 (1955) Zbl0065.16502MR17,409a
  42. [42] Ghys, E. : Déformations des structures complexes sur les espaces homogènes de SL(2,ℂ). J. Reine Angew. Math. 468, 113-138 (1995) Zbl0868.32023MR96m:32017
  43. [43] Goto, M. : On an arcwise connected subgroup of a Lie group. Proc. A.M.S. 20, 157-162 (1969) Zbl0182.04602MR38 #2244
  44. [44] Grauert, H. : Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen. Math. Ann. 133, 450-472 (1957) Zbl0080.29202MR20 #4660
  45. [45] Grauert, H. ; Remmert, R. : Über kompakte homogene komplexe Mannigfaltigkeiten. Arch. Math. 13, 498-507 (1962) Zbl0118.37402MR26 #3089
  46. [46] Grauert, H., Remmert, R. : Coherent Analytic Sheaves. Springer 1984 Zbl0537.32001MR86a:32001
  47. [47] Green, M. ; Griffiths, P. : Two Applications of Algebraic Geometry to Entire Holomorphic Mappings. The Chern Symposium 1979, Springer, New-York Berlin (1980) Zbl0508.32010
  48. [48] Griffiths, P. ; Harris, J. : Principles of Algebraic Geometry. Pure and Applied Mathematics, Wiley-Interscience, New-York (1978) Zbl0408.14001MR80b:14001
  49. [49] Gromov, M. ; Schoen, R. : Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Publ. IHES 76, 165-246 (1992). Zbl0896.58024MR94e:58032
  50. [50] Gunning, R. : Introduction to Holomorphic Functions of several variables. 3 volumes. Wadsworth 1990. Zbl0699.32001
  51. [51] Harder, G. : Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen. Jahresber. DMV, 70, 182-216 (1968). Zbl0194.05701MR39 #4165
  52. [52] Hartshorne, R. : Varieties of small codimension in projective space. Bull. A.M.S. 80, 1017-1032 (1974). Zbl0304.14005MR52 #5688
  53. [53] Hartshorne, R. : Algebraic Geometry. Springer 1977. Zbl0367.14001MR57 #3116
  54. [54] Higman, G. : A finitely generated infinite simple group. J. London Math. Soc. 26, 61-64 (1951). Zbl0042.02201MR12,390c
  55. [55] Hironaka, H. : Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math. (2), 79, 109-326 (1964). Zbl0122.38603MR33 #7333
  56. [56] Hironaka, H. : Bimeromorphic smoothing of a complex-analytic space. Math. Inst. Warwick Univ. 1971. Zbl0407.32006
  57. [57] Hochschild, G. : The Structure of Lie groups. Holden Day Inc 1965. Zbl0131.02702MR34 #7696
  58. [58] Huckleberry, A.T. ; Margulis, G.A. : Invariant analytic hypersurfaces. Invent. Math. 71, 235-240 (1983). Zbl0507.32024MR84i:32046
  59. [59] Huckleberry, A.T. ; Oeljeklaus, E. : Classification theorems for almost homogeneous spaces. Revue De l'Institut Elie Cartan, Numéro 9, Janvier 1984. Zbl0549.32024MR86g:32050
  60. [60] Huckleberry, A.T. ; Oeljeklaus, E. : On holomorphically separable complex solvmanifolds. Ann. Inst. Fourier XXXVI 3, 57-65 (1986). Zbl0571.32012MR88b:32069
  61. [61] Huckleberry, A.T. : Actions of Groups of Holomorphic Transformations. Encyclopaedia of Mathematical Sciences. Volume 69 Several Complex Variables VI. (1990). Zbl0744.32018MR92j:32115
  62. [62] Huckleberry, A.T. ; Snow, D. : Pseudoconcave homogeneous manifolds. Ann. Scuola Norm. Sup. Pisa, (4), 7, 29-54 (1980). Zbl0506.32015MR81f:32043
  63. [63] Huckleberry, A.T. ; Winkelmann, J. : Subvarieties of parallelizable manifolds. Math. Ann. 295, 469-483 (1993). Zbl0824.32011MR94a:32048
  64. [64] Humphries, J. : Linear algebraic groups. GTM 21 Springer 1975. Zbl0325.20039MR53 #633
  65. [65] Humphries, J. : Arithmetic Groups. LN 789 Springer 1980. Zbl0426.20029MR82j:10041
  66. [66] Husemoller, Dale : Fibre bundles. 3. ed. Springer 1994. Zbl0794.55001MR94k:55001
  67. [67] Iwamoto, T. : Density properties of complex Lie groups. Osaka J.Math. 23, 859-865 (1986). Zbl0627.22007MR88f:22023
  68. [68] Jordan, C. : Mémoire sur les équations différent linéaires à intégrale algébriques. J. Reine Angew. Math. 84, 89-215 (1878). JFM09.0234.01
  69. [69] Jørgensen, T. : Compact 3-manifolds of constant negative curvature fibering over the circle. Ann. Math. 106, 61-72 (1977). Zbl0368.53025MR56 #8840
  70. [70] Jost, J. ; Yau, S.T. : Harmonic maps and superrigidity. Proc. Symp. Pure Math. 54, 245-280 (1993). Zbl0806.58012MR94m:58060
  71. [71] Kaup, B. ; Kaup, L. : Holomorphic Functions of Several Variables. De Gruyter 1983. Zbl0528.32001MR85k:32001
  72. [72] Každan, D.A. : Connection of the dual space of a group with the structure of its closed subgroups. Funct. Anal. Appl. 1, 63-65 (1967). Zbl0168.27602MR35 #288
  73. [73] Každan, D.A. ; Margulis, G.A. : A proof of Selbergs hypothesis. Math. Sbornik 75, 162-168 (1968). Zbl0241.22024MR36 #6535
  74. [74] Knapp, A. : Lie Groups Beyond an Introduction. Birkhäuser 1996. Zbl0862.22006MR98b:22002
  75. [75] Kobayashi, S. : Hyperbolic manifolds and holomorphic mappings. Dekker Inc. 1970. Zbl0207.37902MR43 #3503
  76. [76] Koblitz, N. ; Rohrlich, D. : Simple factors in the Jacobian of a Fermat curve. Canad. J. Math. 31, 1183-1205 (1978). Zbl0399.14023MR80d:14022
  77. [77] Kraft, H. : Geometrische Methoden in der Invariantentheorie. Aspekte der Mathematik, Band D1. Vieweg 1984. Zbl0669.14003MR86j:14006
  78. [78] Lang, S. : Abelian Varieties. Interscience 1959. Zbl0098.13201MR21 #4959
  79. [79] Lang, S. : Complex Multiplication. Springer 1983. Zbl0536.14029MR85f:11042
  80. [80] Lang, S. : Introduction to Complex Hyperbolic Spaces. Springer 1987. Zbl0628.32001MR88f:32065
  81. [81] Lescure, F. : Action non triviale sur le premier groupe de comologie de Dolbeault. Comptes Rendus Acad. Sci. Paris 316, 823-825 (1993). Zbl0784.32011MR94d:32045
  82. [82] Lescure, F. : Cohomologie totale et courants de Dolbeault invariants. J. Reine Angew. Math. 475, 103-136 (1996). Zbl0848.32022MR98a:32041
  83. [83] Lindemann : Über die Zahl π. Math. Ann. 20, 213-225 (1882). JFM14.0369.04
  84. [84] Lubotzky, A. : Free Quotients and the first Betti number of some hyperbolic manifolds. Transformation Groups. 1, 71-82 (1996). Zbl0876.22015MR97d:57016
  85. [85] Lundell, A. ; Weingram, S. : The topology of CW-complexes. Van Nostrand 1969. Zbl0207.21704
  86. [86] Makarov, V.S. : On a certain class of discrete groups of Lobachevsky space having an infinite fundamental region of finite measure. Soviet Math. Dokl. 7, 328-331 (1966). Zbl0146.16502MR36 #3566
  87. [87] Malcev, A. : On isomorphism matrix representations of infinite groups. Mat. Sb. 8, 405-422 (1940). Zbl0025.00804MR2,216dJFM66.0088.03
  88. [88] Malcev, A. : Commutative subalgebras of semisimple Lie algebras. Izv. Nauk USSR 9, 291-300 (1945). Zbl0063.03728MR7,362a
  89. [89] Malcev, A. : On a class of homogeneous spaces. Izvestiya Akad. Nauk SSSR Ser. Math. 13 (1949)/ AMS Transl. no. 39 (1951). Zbl0034.01701MR10,507d
  90. [90] Margulis, G.A. : Free totally discontinuous groups of affine transformations. Soviet Math. Doklady 28, 435-439 (1983). Zbl0578.57012
  91. [91] Margulis, G.A. : Complete affine locally flat manifolds with free fundamental group. Zapiski Nauen. Sem. Leningrad Otd. Mat. Inst. Steklov 134, 190-205 (1984) [in Russian]. Zbl0547.57030MR86h:22019
  92. [92] Margulis, G. : Discrete subgroups of semi-simple Lie groups. Erg. Math., Springer-Verlag 1990. Zbl0732.22008
  93. [93] Matsushima, Y. : On the discrete subgroups and homogeneous spaces of nilpotent Lie groups. Nagoya Math. J. 2, 95-110 (1951). Zbl0045.31002MR12,802b
  94. [94] Matsushima, Y. : Fibrés holomorphes sur un tore complexe. Nagoya Math. J. 14, 1-24 (1959). Zbl0095.36702MR21 #1403
  95. [95] Matsushima, Y. : Espaces homogènes de Stein des groupes de Lie complexes I. Nagoya Math. J. 16, 205-218 (1960). Zbl0094.28201MR22 #739
  96. [96] Matsushima, Y. ; Morimoto, A. : Sur certaines espaces fibrés holomorphes sur une variété de Stein. Bull. Soc. Math. France 88, 137-155 (1960). Zbl0094.28104MR23 #A1061
  97. [97] Millson, J.J. : On the first Betti number of a compact constant negatively curved manifold. Ann. of Math. 104, 235-247 (1976). Zbl0364.53020MR54 #10488
  98. [98] Milnor, J. : On fundamental groups of completely affinely flat manifolds. Adv. Math. 25, 178-187 (1977). Zbl0364.55001MR56 #13130
  99. [99] Mok, N. ; Siu, Y.T. ; Yeung, S.K. : Geometric superrigidity. Invent. math. 113, 57-83 (1993). Zbl0808.53043MR94h:53079
  100. [100] Montgomery, D. ; Zippin, L. : Topological Transformation Groups. Interscience 1955. Zbl0068.01904MR17,383b
  101. [101] Morimoto, A. : Sur le groupe d'automorphismes d'un espace fibré principal analytique complexe. Nagoya Math. J. 13, 157-168 (1959). Zbl0107.28603MR20 #2474
  102. [102] Moskowitz, M. : On the density theorems of Borel and Furstenberg. Ark. Mat. 16, 11-27 (1978). Zbl0383.22008MR58 #22393
  103. [103] Mostow, G.D. : Factor spaces of solvable groups. Ann. of Math. 60, 1-27 (1954). Zbl0057.26103MR15,853g
  104. [104] Mostow, G.D. : Homogeneous spaces of finite invariant measures Ann. of Math. 75, 17-37 (1962) Zbl0115.25702MR26 #2546
  105. [105] Mostow, G.D. : Intersection of discrete subgroups with Cartan subgroups. J. Ind. Math. Soc. 34, 203-214 (1970) Zbl0235.22019MR58 #11228
  106. [106] Mostow, G.D. : Arithmetic subgroups of groups with radical. Ann. Math. 93, 409-438 (1971) Zbl0212.36403MR44 #6901
  107. [107] Mostow, G.D. ; Tamagawa, T. : On the compactness of the arithmetically defined homogeneous spaces. Ann. Math. 76, 440-463 (1962) Zbl0196.53201MR25 #5069
  108. [108] Mumford, D. : Abelian varieties. Oxford University Press 1970 Zbl0223.14022MR44 #219
  109. [109] Murakami, S. : Sur certains espaces fibrés principaux holomorphes admettant des connexions holomorphes. Osaka Math. J. 11, 43-62 (1959) Zbl0087.37201MR22 #958
  110. [110] Nakamura, I. : Complex parallisable manifolds and their small deformations. J. Diff. Geo. 10, 85-112 (1975). Zbl0297.32019MR52 #14389
  111. [111] Neukirch : Algebraische Zahlentheorie. Springer 1992 Zbl0747.11001
  112. [112] Oeljeklaus, K. : Hyperflächen und Geradenbündel auf homogenen komplexen Mannnigfaltigkeiten. Schriftenreihe Math. Inst. Univ. Münster (2) 36 (1985) Zbl0594.32032MR87h:32063
  113. [113] Oeljeklaus, K. ; Winkelmann, J. : Some Remarks on Parallelizable Manifolds. Publ. IRMA, Lille 27, 1992 
  114. [114] Okonek, Ch. ; Schneider, M. ; and Spindler, H. : Vector Bundles on Complex Projective Spaces. Progress in Math. 3, Birkhäuser Boston, 1980 Zbl0438.32016MR81b:14001
  115. [115] Onishchik, A. ; Vinberg, E. : Lie groups and Algebraic groups. Springer 1990 Zbl0722.22004MR91g:22001
  116. [116] Otte, M. : Über homogene kompakte komplexe Mannigfaltigkeiten. Habilitationsschrift. Münster 1972 
  117. [117] Otte, M. ; Potters, J. : Beispiele homogener Mannigfaltigkeiten. Manu. math. 10, 117-127 (1973) Zbl0264.32013MR48 #8859
  118. [118] Pansu, P. : Sous-groupes discrets des groupes de Lie : rigidité, arithmeticité. Séminaire Bourbaki. 46ème année (1993/1994), exposé 778 Zbl0835.22011
  119. [119] Parshin : Generalized Jacobians. Transl. A.M.S. 84 (1968) 
  120. [120] Pothering, G. : Meromorphic function fields of non-compact ℂ/Г. Ph. D. thesis. Notre Dame University, Indiana 1977 
  121. [121] Raghunathan, M.S. : On the first cohomology of discrete subgroups of semisimple Lie groups. Amer. J. Math. 87, 103-139 (1965) Zbl0132.02102MR30 #3940
  122. [122] Raghunathan, M.S. : Vanishing Theorems for Cohomology Groups Associated To Discrete Subgroups of Semisimple Lie Groups. Osaka J. Math. 3, 243-256 (1966) Zbl0145.43702MR35 #1719
  123. [123] Raghunathan, M.S. : Discrete subgroups of Lie groups. Erg. Math. Grenzgeb. 68, Springer (1972) Zbl0254.22005MR58 #22394a
  124. [124] Rajan, C.S. : Deformations of complex structure Г2(ℂ). Proc. Indian Acad. Sci. Math. Sci. 104, n° 2, 389-395 (1994). Zbl0837.11034MR95h:22014
  125. [125] Remmert, R. : Meromorphe Funktionen in Kompakten Komplexen Räumen. Math. Ann. 132, 277-288 (1956) Zbl0072.08001MR19,171a
  126. [126] Remmert, R. ; van de Ven, T. : Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten. Topology 2, 137-157 (1963) Zbl0122.08602MR26 #5594
  127. [127] Rosay, J.P. ; Rudin, W. : Holomorphic maps from ℂn to ℂn Trans. A.M.S. 310, 47-86 (1988) Zbl0708.58003MR89d:32058
  128. [128] Rosenlicht, M. : On quotient varieties and the affine embedding of certain homogeneous spaces. Trans. A.M.S. 101, 211-223 (1961) Zbl0111.17902MR24 #A732
  129. [129] Sakane, Y. : On Compact Complex parallelisable Solvmanifolds. Osaka J. Math. 13, 187-219 (1976) Zbl0361.22005MR54 #10692
  130. [130] Scharlau, W. : Quadratic and hermitian forms. Grundlehren der mathematischen Wissenschaften, 270. Springer 1985 Zbl0584.10010MR86k:11022
  131. [131] Schur, I. : Über Gruppen periodischer Substitutionen. Sitzber. Preuss. Akad. Wiss., 619-627 (1911) Zbl42.0155.01JFM42.0155.01
  132. [132] Schur, I. : Zur Theorie vertauschbarer Matrizen. J. Reine Angew. Math. 30, 66-76 (1905) JFM36.0140.01
  133. [133] Serre, J.P. : Galois Cohomology. Translated from the French by Patrick Ion and revised by the author. Springer 1997 Zbl0902.12004MR98g:12007
  134. [134] Serre, J.P. : Cohomologie galoisienne. Lecture Notes in Mathematics, Springer 1994 Zbl0812.12002MR96b:12010
  135. [135] Shimura, G. ; Taniyama, Y. : Complex multiplications of abelian varieties and its applications to number theory. Publ. Math. Soc. Japan 6 (1961) Zbl0112.03502MR23 #A2419
  136. [136] Selberg, A. : On discontinuous groups in higher-dimensional symmetric spaces. in Contributions to function theory. Bombay 1960, p. 147-164 Zbl0201.36603MR24 #A188
  137. [137] Serre, J.P. : Sur les modules projectifs. Sem. Dubreil-Pisot exposé 2. (1960/1961) Zbl0132.41301
  138. [138] Snow, D. ; Winkelmann, J. : Homogeneous Manifolds with Large Automorphism Groups. Invent. math. (1998) Zbl0901.32022MR99f:32054
  139. [139] Spanier, E. : Algebraic Topology McGraw-Hill1966. Corrected Reprint : Springer 1981 Zbl0477.55001
  140. [140] Taubes, C.H. : The existence of self-dual conformal structures. J. Diff. Geom. 36, 163-253 (1992) Zbl0822.53006MR93j:53063
  141. [141] Thurston, W. : Threedimensional manifolds, Kleinian groups and Hyperbolic Geometry. Bull. A.M.S. 6, N.S. 357-381 (1982) Zbl0496.57005MR83h:57019
  142. [142] Thurston, W. : Three-dimensional geometry and topology. Vol. 1. Edited by Silvio Levy. Princeton Mathematical Series, 35. Princeton University Press 1997 Zbl0873.57001MR97m:57016
  143. [143] Tits, J. : Espaces homogènes complexes compacts. Comm. Math. Helv. 37 (1962), 111-120 Zbl0108.36302MR27 #4248
  144. [144] Tits, J. : Tabellen zu den eifachen Lie Gruppen und ihren Darstellungen. Springer LN 40. 1967 Zbl0166.29703
  145. [145] Tits, J. : Free subgroups in linear groups. J. Algebra 20, 250-270 (1972) Zbl0236.20032MR44 #4105
  146. [146] Ueno, K. : Classification Theory of Algebraic Varieties and Compact Complex Spaces. LN 439 Springer 1975 Zbl0299.14007MR58 #22062
  147. [147] Varouchas, J. : Kähler spaces and proper open morphisms. Math. Ann. 283, 13-52 (1989) Zbl0632.53059MR89m:32021
  148. [148] Vinberg, E.B. : Discrete groups generated by reflections in Lobachevsky spaces. Math. USSR Sbornik 1, 429-444 (1967) 
  149. [149] Wang, H. : Complex parallelisable manifolds. Proc. A.M.S. 5, 771-776 (1954) Zbl0056.15403
  150. [150] Weil, A. : On discrete subgroups of Lie groups I, II. Ann. Math. 72, 369-384 (1960) and 75, 578-602 (1962) Zbl0131.26602MR25 #1241
  151. [151] Weil, A. : Remarks on the cohomology of groups. Ann. of Math. 80, 149-157 (1964) Zbl0192.12802MR30 #199
  152. [152] Winkelmann, J. : Every compact complex manifold admits a holomorphic vector bundle. Revue Roum. Math. Pures et Appl. 38, 743-744 (1993) Zbl0813.32025MR95a:32051
  153. [153] Winkelmann, J. : Complex-Analytic Geometry of Complex Parallelizable Manifolds. Habilitationsschrift. Ruhr-Universität Bochum. Schriftenreihe des Graduiertenkolleg, Heft 13 (1995) Zbl0918.32015
  154. [154] Holomorphic Functions on Algebraic Groups Invariant under a Zariski dense subgroup. 519-529 in Proc. Complex Analysis and Geometry. Lecture Notes in Pure and Applied Math., Dekker Inc. 1995 Zbl0856.32021
  155. [155] Winkelmann, J. : Complex Parallelizable Manifolds. Proc. Geometric Complex Analysis. 667-678 ed. by J. Noguchi et. al. World Scientific Publishing. Singapur 1996 Zbl0917.32005MR98g:32055
  156. [156] Winkelmann, J. : On Discrete Zariski Dense Subgroups of Algebraic Groups. Math. Nachr. 186, 285-302 (1997) Zbl0897.14015MR98d:20052
  157. [157] Winkelmann, J. : Only Countably Many Simply-Connected Lie Groups Admit Lattices. Complex Analysis and Geometry. Pitman Research Notes in Mathematics Series. V. Ancona, E. Ballico, R. Miro-Roig, A. Silva eds. Zbl0915.22007
  158. [158] Winkelmann, J. : Holomorphic self-maps of Parallelizable Manifolds. Transformation Groups. (1998) Zbl0902.32009MR99c:57068
  159. [159] Winkelmann, J. : Homogeneous Vector bundles on Parallelizable Manifolds. (to appear) Zbl1005.32017
  160. [160] Winkelmann, J. : The Albanese Variety of a Complex Parallelizable Manifold. (to appear). 
  161. [161] Winkelmann, J. : Arithmeticity of complex nilmanifolds. (to appear) 
  162. [162] Wu, T.S. : A Note on a Theorem on lattices in Lie Groups. Canad. Math. Bull. 31 (2), (1988) Zbl0653.22009MR89e:22017
  163. [163] Zimmer, R. : Ergodic Theory and Semisimple Groups. Birkhäuser 1984 Zbl0571.58015MR86j:22014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.