Complex analytic geometry of complex parallelizable manifolds
Mémoires de la Société Mathématique de France (1998)
- Volume: 72-73, page III1-X216
- ISSN: 0249-633X
Access Full Article
topHow to cite
topWinkelmann, Jörg. "Complex analytic geometry of complex parallelizable manifolds." Mémoires de la Société Mathématique de France 72-73 (1998): III1-X216. <http://eudml.org/doc/94924>.
@article{Winkelmann1998,
author = {Winkelmann, Jörg},
journal = {Mémoires de la Société Mathématique de France},
language = {eng},
pages = {III1-X216},
publisher = {Société mathématique de France},
title = {Complex analytic geometry of complex parallelizable manifolds},
url = {http://eudml.org/doc/94924},
volume = {72-73},
year = {1998},
}
TY - JOUR
AU - Winkelmann, Jörg
TI - Complex analytic geometry of complex parallelizable manifolds
JO - Mémoires de la Société Mathématique de France
PY - 1998
PB - Société mathématique de France
VL - 72-73
SP - III1
EP - X216
LA - eng
UR - http://eudml.org/doc/94924
ER -
References
top- [1] Akhiezer, D.N. : Invariant meromorphic functions on complex semisimple Lie groups. Invent. Math. 65, n° 3, 325-329 (1981/1982) Zbl0479.32010MR83h:32030
- [2] Akhiezer, D.N. : Lie Groups actions in complex analysis. Aspects of Mathematics. Vieweg 1995 Zbl0845.22001MR96g:32051
- [3] Akhiezer, D.N. : Group actions on the Dolbeault cohomology of homogeneous manifolds. Math. Z. (1996). Zbl0891.32007
- [4] Atiyah, M. : On the Krull-Schmidt theorem with applications to sheaves. Bull. Soc. Math. France 84, 307-317 (1956) Zbl0072.18101MR19,172b
- [5] Atiyah, M. : Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85, 181-207 (1957) Zbl0078.16002MR19,172c
- [6] Atiyah, M. : K-Theory. Benjamin 1967 Zbl0159.53302MR36 #7130
- [7] Atiyah, M. ; Rees, F. : Vector Bundles on Projective 3-space. Invent. Math. 36, 131-153 (1976) Zbl0332.32020MR54 #7870
- [8] Baker, A. : Transcendental Number Theory. Cambridge University Press 1975 Zbl0297.10013MR54 #10163
- [9] Barlet, D. : Familles analytiques de cycles paramétrées par un espace analytique réduit. LN 481, 1-158. Springer 1975 MR53 #3347
- [10] Barth, W. ; Otte, M. : Über fast-uniforme Untergruppen komplexer Liegruppen und auflösbare komplexe Mannigfaltigkeiten. Comm. Math. Helv. 44, 269-281 (1969) Zbl0172.37804MR40 #6597
- [11] Barth, W. ; Otte, M. : Invariante Holomorphe Funktionen auf reduktiven Liegruppen. Math. Ann. 201, 91-112 (1973) Zbl0253.32018MR51 #13300
- [12] Berteloot, F. ; Oeljeklaus, K. : Invariant Plurisubharmonic Functions and Hypersurfaces on Semisimple Complex Lie Groups. Math. Ann. 281, 513-530 (1988) Zbl0653.32029MR89i:32065
- [13] Bierstone, E. ; Milman, P.D. : Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128, 207-302 (1997) Zbl0896.14006MR98e:14010
- [14] Blanchard, A. : Sur les variétés analytiques complexes. Ann. Sci. ecole norm. sup. 73, 157-202 (1956) Zbl0073.37503MR19,316e
- [15] Bochner, S. ; Montgomery, D. : Groups on analytic manifolds. Ann. of Math. 48 (2), 659-669 (1947). Zbl0030.07501MR9,174f
- [16] Boothby, W. ; Wang, H. : On the finite Subgroups of Connected Lie Groups. Comm. Math. Helv. 39, 281-294 (1964) Zbl0138.03001MR31 #4856
- [17] Borel, A. : Density properties of certain subgroups of semisimple groups without compact components. Ann. of Math. 72, 179-188 (1960) Zbl0094.24901MR23 #A964
- [18] Borel, A. : Compact Clifford Klein forms of symmetric spaces. Topology 2, 111-122 (1963) Zbl0116.38603MR26 #3823
- [19] Borel, A. : Introduction aux groupes arithmetiques. Hermann 1969 Zbl0186.33202MR39 #5577
- [20] Borel, A. : Linear algebraic groups. Second Enlarged Edition. Springer 1991 Zbl0726.20030MR92d:20001
- [21] Borel, A. ; Harish-Chandra : Arithmetic subgroups of algebraic groups. Ann. Math. 75, 485-535 (1962) Zbl0107.14804MR26 #5081
- [22] Borel, A. ; Remmert, R. : Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann. 145, 429-439 (1962) Zbl0111.18001MR26 #3088
- [23] Borel, A. ; Tits, J. : Groupes Reductifs. IHES 27, 55-152 (1965) Zbl0145.17402MR34 #7527
- [24] Bourbaki, N. : Intégration. Ch. VII. Hermann, Paris. 1960
- [25] Brody, R. : Compact manifolds and hyperbolicity. T.A.M.S. 235, 213-219 (1978) Zbl0416.32013MR57 #10010
- [26] Campana, F. : On Twistor Spaces of the class C.J. Diff. Geo. 33, 541-549 (1991) Zbl0694.32017MR92g:32059
- [27] Campana, F. : Remarques sur le revêtement universel des variétés Kählériennes compactes. Bull. Soc. math. France. 122, 255-284 (1994) Zbl0810.32013MR95f:32036
- [28] Campana, F. : Connexité abélienne des variétés kählériennes compactes. C.R. Acad. Sci. Paris, t. 325, Série I, 755-758 (1997) Zbl0899.53050MR98m:32044
- [29] Capocasa, F. ; Catanese, F. : Periodic meromorphic functions. Acta Math. 166, 27-68 (1991) Zbl0719.32005MR92e:14043
- [30] Cartan, E. : La topologie des groupes de Lie. Enseign. math. 35, 177-200 (1936) Zbl0015.20401JFM62.0441.02
- [31] Cernousov, V.I. : On the Hasse-principle for groups of type E8. Dokl. Akad. Nauk. SSSR 306, 1059-1063 (1989) Translation: Sov. Math. Dokl. 39, 592-596 (1989) Zbl0703.20040
- [32] Cordero, L. ; Fernandez, M. ; Gray, A. : La suite spectrale de Frölicher et les nilvariétés complexes compactes. C.R. Acad. Sci. Paris 305, 753-756 (1987) Zbl0627.32025MR89c:32081
- [33] Cordero, L. ; Fernandez, M. ; Gray, A. : The Froehlicher spectral sequence for compact nilmanifolds. Ill. J. Math. 35, no. 1, 56-67 (1991) Zbl0721.58003MR92b:53112
- [34] Corlette, K. : Archimedean superrigidity and hyperbolic geometry. Ann. of Math. 135, 165-182 (1992) Zbl0768.53025MR92m:57048
- [35] Curtis, C. ; Reiner, I. : Representation Theory of Finite Groups and associative algebras. Interscience 1962. (Reprinted 1988 in the Wiley Classics Library series.) Zbl0634.20001
- [36] Dixmier, J. ; Lister, W.G. : Derivations of nilpotent Lie algebras Proc. A.M.S. 8, 155-158 (1957) Zbl0079.04802MR18,659a
- [37] Dold, A. : Lectures on Algebraic Topology. Springer Berlin Heidelberg New York 1972 Zbl0234.55001MR54 #3685
- [38] Dynkin, E.B. : Semisimple subalgebras of semisimple Lie algebras. Mat. Sbornik N.S. 30 (72), 349-462, Moskva (1952) Zbl0048.01701MR13,904c
- [39] Dynkin, E.B. : Maximal subgroups of classical groups. Trudy Moskov. Mat. Ob. 1, 39-66, Moskva (1952) Zbl0048.01601MR14,244d
- [40] Forster, O. ; Knorr, K. : Über die Deformationen von Vektorraumbündeln auf kompakten komplexen Räumen. Math. Ann. 209, 291-346 (1974) Zbl0272.32004MR51 #10695
- [41] Frölicher : Relations between the cohomology groups of Dolbeault and topological invariants. Proc. Nat. Acad. Sci. U.S.A. 41, 641-644 (1955) Zbl0065.16502MR17,409a
- [42] Ghys, E. : Déformations des structures complexes sur les espaces homogènes de SL(2,ℂ). J. Reine Angew. Math. 468, 113-138 (1995) Zbl0868.32023MR96m:32017
- [43] Goto, M. : On an arcwise connected subgroup of a Lie group. Proc. A.M.S. 20, 157-162 (1969) Zbl0182.04602MR38 #2244
- [44] Grauert, H. : Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen. Math. Ann. 133, 450-472 (1957) Zbl0080.29202MR20 #4660
- [45] Grauert, H. ; Remmert, R. : Über kompakte homogene komplexe Mannigfaltigkeiten. Arch. Math. 13, 498-507 (1962) Zbl0118.37402MR26 #3089
- [46] Grauert, H., Remmert, R. : Coherent Analytic Sheaves. Springer 1984 Zbl0537.32001MR86a:32001
- [47] Green, M. ; Griffiths, P. : Two Applications of Algebraic Geometry to Entire Holomorphic Mappings. The Chern Symposium 1979, Springer, New-York Berlin (1980) Zbl0508.32010
- [48] Griffiths, P. ; Harris, J. : Principles of Algebraic Geometry. Pure and Applied Mathematics, Wiley-Interscience, New-York (1978) Zbl0408.14001MR80b:14001
- [49] Gromov, M. ; Schoen, R. : Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Publ. IHES 76, 165-246 (1992). Zbl0896.58024MR94e:58032
- [50] Gunning, R. : Introduction to Holomorphic Functions of several variables. 3 volumes. Wadsworth 1990. Zbl0699.32001
- [51] Harder, G. : Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen. Jahresber. DMV, 70, 182-216 (1968). Zbl0194.05701MR39 #4165
- [52] Hartshorne, R. : Varieties of small codimension in projective space. Bull. A.M.S. 80, 1017-1032 (1974). Zbl0304.14005MR52 #5688
- [53] Hartshorne, R. : Algebraic Geometry. Springer 1977. Zbl0367.14001MR57 #3116
- [54] Higman, G. : A finitely generated infinite simple group. J. London Math. Soc. 26, 61-64 (1951). Zbl0042.02201MR12,390c
- [55] Hironaka, H. : Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math. (2), 79, 109-326 (1964). Zbl0122.38603MR33 #7333
- [56] Hironaka, H. : Bimeromorphic smoothing of a complex-analytic space. Math. Inst. Warwick Univ. 1971. Zbl0407.32006
- [57] Hochschild, G. : The Structure of Lie groups. Holden Day Inc 1965. Zbl0131.02702MR34 #7696
- [58] Huckleberry, A.T. ; Margulis, G.A. : Invariant analytic hypersurfaces. Invent. Math. 71, 235-240 (1983). Zbl0507.32024MR84i:32046
- [59] Huckleberry, A.T. ; Oeljeklaus, E. : Classification theorems for almost homogeneous spaces. Revue De l'Institut Elie Cartan, Numéro 9, Janvier 1984. Zbl0549.32024MR86g:32050
- [60] Huckleberry, A.T. ; Oeljeklaus, E. : On holomorphically separable complex solvmanifolds. Ann. Inst. Fourier XXXVI 3, 57-65 (1986). Zbl0571.32012MR88b:32069
- [61] Huckleberry, A.T. : Actions of Groups of Holomorphic Transformations. Encyclopaedia of Mathematical Sciences. Volume 69 Several Complex Variables VI. (1990). Zbl0744.32018MR92j:32115
- [62] Huckleberry, A.T. ; Snow, D. : Pseudoconcave homogeneous manifolds. Ann. Scuola Norm. Sup. Pisa, (4), 7, 29-54 (1980). Zbl0506.32015MR81f:32043
- [63] Huckleberry, A.T. ; Winkelmann, J. : Subvarieties of parallelizable manifolds. Math. Ann. 295, 469-483 (1993). Zbl0824.32011MR94a:32048
- [64] Humphries, J. : Linear algebraic groups. GTM 21 Springer 1975. Zbl0325.20039MR53 #633
- [65] Humphries, J. : Arithmetic Groups. LN 789 Springer 1980. Zbl0426.20029MR82j:10041
- [66] Husemoller, Dale : Fibre bundles. 3. ed. Springer 1994. Zbl0794.55001MR94k:55001
- [67] Iwamoto, T. : Density properties of complex Lie groups. Osaka J.Math. 23, 859-865 (1986). Zbl0627.22007MR88f:22023
- [68] Jordan, C. : Mémoire sur les équations différent linéaires à intégrale algébriques. J. Reine Angew. Math. 84, 89-215 (1878). JFM09.0234.01
- [69] Jørgensen, T. : Compact 3-manifolds of constant negative curvature fibering over the circle. Ann. Math. 106, 61-72 (1977). Zbl0368.53025MR56 #8840
- [70] Jost, J. ; Yau, S.T. : Harmonic maps and superrigidity. Proc. Symp. Pure Math. 54, 245-280 (1993). Zbl0806.58012MR94m:58060
- [71] Kaup, B. ; Kaup, L. : Holomorphic Functions of Several Variables. De Gruyter 1983. Zbl0528.32001MR85k:32001
- [72] Každan, D.A. : Connection of the dual space of a group with the structure of its closed subgroups. Funct. Anal. Appl. 1, 63-65 (1967). Zbl0168.27602MR35 #288
- [73] Každan, D.A. ; Margulis, G.A. : A proof of Selbergs hypothesis. Math. Sbornik 75, 162-168 (1968). Zbl0241.22024MR36 #6535
- [74] Knapp, A. : Lie Groups Beyond an Introduction. Birkhäuser 1996. Zbl0862.22006MR98b:22002
- [75] Kobayashi, S. : Hyperbolic manifolds and holomorphic mappings. Dekker Inc. 1970. Zbl0207.37902MR43 #3503
- [76] Koblitz, N. ; Rohrlich, D. : Simple factors in the Jacobian of a Fermat curve. Canad. J. Math. 31, 1183-1205 (1978). Zbl0399.14023MR80d:14022
- [77] Kraft, H. : Geometrische Methoden in der Invariantentheorie. Aspekte der Mathematik, Band D1. Vieweg 1984. Zbl0669.14003MR86j:14006
- [78] Lang, S. : Abelian Varieties. Interscience 1959. Zbl0098.13201MR21 #4959
- [79] Lang, S. : Complex Multiplication. Springer 1983. Zbl0536.14029MR85f:11042
- [80] Lang, S. : Introduction to Complex Hyperbolic Spaces. Springer 1987. Zbl0628.32001MR88f:32065
- [81] Lescure, F. : Action non triviale sur le premier groupe de comologie de Dolbeault. Comptes Rendus Acad. Sci. Paris 316, 823-825 (1993). Zbl0784.32011MR94d:32045
- [82] Lescure, F. : Cohomologie totale et courants de Dolbeault invariants. J. Reine Angew. Math. 475, 103-136 (1996). Zbl0848.32022MR98a:32041
- [83] Lindemann : Über die Zahl π. Math. Ann. 20, 213-225 (1882). JFM14.0369.04
- [84] Lubotzky, A. : Free Quotients and the first Betti number of some hyperbolic manifolds. Transformation Groups. 1, 71-82 (1996). Zbl0876.22015MR97d:57016
- [85] Lundell, A. ; Weingram, S. : The topology of CW-complexes. Van Nostrand 1969. Zbl0207.21704
- [86] Makarov, V.S. : On a certain class of discrete groups of Lobachevsky space having an infinite fundamental region of finite measure. Soviet Math. Dokl. 7, 328-331 (1966). Zbl0146.16502MR36 #3566
- [87] Malcev, A. : On isomorphism matrix representations of infinite groups. Mat. Sb. 8, 405-422 (1940). Zbl0025.00804MR2,216dJFM66.0088.03
- [88] Malcev, A. : Commutative subalgebras of semisimple Lie algebras. Izv. Nauk USSR 9, 291-300 (1945). Zbl0063.03728MR7,362a
- [89] Malcev, A. : On a class of homogeneous spaces. Izvestiya Akad. Nauk SSSR Ser. Math. 13 (1949)/ AMS Transl. no. 39 (1951). Zbl0034.01701MR10,507d
- [90] Margulis, G.A. : Free totally discontinuous groups of affine transformations. Soviet Math. Doklady 28, 435-439 (1983). Zbl0578.57012
- [91] Margulis, G.A. : Complete affine locally flat manifolds with free fundamental group. Zapiski Nauen. Sem. Leningrad Otd. Mat. Inst. Steklov 134, 190-205 (1984) [in Russian]. Zbl0547.57030MR86h:22019
- [92] Margulis, G. : Discrete subgroups of semi-simple Lie groups. Erg. Math., Springer-Verlag 1990. Zbl0732.22008
- [93] Matsushima, Y. : On the discrete subgroups and homogeneous spaces of nilpotent Lie groups. Nagoya Math. J. 2, 95-110 (1951). Zbl0045.31002MR12,802b
- [94] Matsushima, Y. : Fibrés holomorphes sur un tore complexe. Nagoya Math. J. 14, 1-24 (1959). Zbl0095.36702MR21 #1403
- [95] Matsushima, Y. : Espaces homogènes de Stein des groupes de Lie complexes I. Nagoya Math. J. 16, 205-218 (1960). Zbl0094.28201MR22 #739
- [96] Matsushima, Y. ; Morimoto, A. : Sur certaines espaces fibrés holomorphes sur une variété de Stein. Bull. Soc. Math. France 88, 137-155 (1960). Zbl0094.28104MR23 #A1061
- [97] Millson, J.J. : On the first Betti number of a compact constant negatively curved manifold. Ann. of Math. 104, 235-247 (1976). Zbl0364.53020MR54 #10488
- [98] Milnor, J. : On fundamental groups of completely affinely flat manifolds. Adv. Math. 25, 178-187 (1977). Zbl0364.55001MR56 #13130
- [99] Mok, N. ; Siu, Y.T. ; Yeung, S.K. : Geometric superrigidity. Invent. math. 113, 57-83 (1993). Zbl0808.53043MR94h:53079
- [100] Montgomery, D. ; Zippin, L. : Topological Transformation Groups. Interscience 1955. Zbl0068.01904MR17,383b
- [101] Morimoto, A. : Sur le groupe d'automorphismes d'un espace fibré principal analytique complexe. Nagoya Math. J. 13, 157-168 (1959). Zbl0107.28603MR20 #2474
- [102] Moskowitz, M. : On the density theorems of Borel and Furstenberg. Ark. Mat. 16, 11-27 (1978). Zbl0383.22008MR58 #22393
- [103] Mostow, G.D. : Factor spaces of solvable groups. Ann. of Math. 60, 1-27 (1954). Zbl0057.26103MR15,853g
- [104] Mostow, G.D. : Homogeneous spaces of finite invariant measures Ann. of Math. 75, 17-37 (1962) Zbl0115.25702MR26 #2546
- [105] Mostow, G.D. : Intersection of discrete subgroups with Cartan subgroups. J. Ind. Math. Soc. 34, 203-214 (1970) Zbl0235.22019MR58 #11228
- [106] Mostow, G.D. : Arithmetic subgroups of groups with radical. Ann. Math. 93, 409-438 (1971) Zbl0212.36403MR44 #6901
- [107] Mostow, G.D. ; Tamagawa, T. : On the compactness of the arithmetically defined homogeneous spaces. Ann. Math. 76, 440-463 (1962) Zbl0196.53201MR25 #5069
- [108] Mumford, D. : Abelian varieties. Oxford University Press 1970 Zbl0223.14022MR44 #219
- [109] Murakami, S. : Sur certains espaces fibrés principaux holomorphes admettant des connexions holomorphes. Osaka Math. J. 11, 43-62 (1959) Zbl0087.37201MR22 #958
- [110] Nakamura, I. : Complex parallisable manifolds and their small deformations. J. Diff. Geo. 10, 85-112 (1975). Zbl0297.32019MR52 #14389
- [111] Neukirch : Algebraische Zahlentheorie. Springer 1992 Zbl0747.11001
- [112] Oeljeklaus, K. : Hyperflächen und Geradenbündel auf homogenen komplexen Mannnigfaltigkeiten. Schriftenreihe Math. Inst. Univ. Münster (2) 36 (1985) Zbl0594.32032MR87h:32063
- [113] Oeljeklaus, K. ; Winkelmann, J. : Some Remarks on Parallelizable Manifolds. Publ. IRMA, Lille 27, 1992
- [114] Okonek, Ch. ; Schneider, M. ; and Spindler, H. : Vector Bundles on Complex Projective Spaces. Progress in Math. 3, Birkhäuser Boston, 1980 Zbl0438.32016MR81b:14001
- [115] Onishchik, A. ; Vinberg, E. : Lie groups and Algebraic groups. Springer 1990 Zbl0722.22004MR91g:22001
- [116] Otte, M. : Über homogene kompakte komplexe Mannigfaltigkeiten. Habilitationsschrift. Münster 1972
- [117] Otte, M. ; Potters, J. : Beispiele homogener Mannigfaltigkeiten. Manu. math. 10, 117-127 (1973) Zbl0264.32013MR48 #8859
- [118] Pansu, P. : Sous-groupes discrets des groupes de Lie : rigidité, arithmeticité. Séminaire Bourbaki. 46ème année (1993/1994), exposé 778 Zbl0835.22011
- [119] Parshin : Generalized Jacobians. Transl. A.M.S. 84 (1968)
- [120] Pothering, G. : Meromorphic function fields of non-compact ℂ/Г. Ph. D. thesis. Notre Dame University, Indiana 1977
- [121] Raghunathan, M.S. : On the first cohomology of discrete subgroups of semisimple Lie groups. Amer. J. Math. 87, 103-139 (1965) Zbl0132.02102MR30 #3940
- [122] Raghunathan, M.S. : Vanishing Theorems for Cohomology Groups Associated To Discrete Subgroups of Semisimple Lie Groups. Osaka J. Math. 3, 243-256 (1966) Zbl0145.43702MR35 #1719
- [123] Raghunathan, M.S. : Discrete subgroups of Lie groups. Erg. Math. Grenzgeb. 68, Springer (1972) Zbl0254.22005MR58 #22394a
- [124] Rajan, C.S. : Deformations of complex structure Г2(ℂ). Proc. Indian Acad. Sci. Math. Sci. 104, n° 2, 389-395 (1994). Zbl0837.11034MR95h:22014
- [125] Remmert, R. : Meromorphe Funktionen in Kompakten Komplexen Räumen. Math. Ann. 132, 277-288 (1956) Zbl0072.08001MR19,171a
- [126] Remmert, R. ; van de Ven, T. : Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten. Topology 2, 137-157 (1963) Zbl0122.08602MR26 #5594
- [127] Rosay, J.P. ; Rudin, W. : Holomorphic maps from ℂn to ℂn Trans. A.M.S. 310, 47-86 (1988) Zbl0708.58003MR89d:32058
- [128] Rosenlicht, M. : On quotient varieties and the affine embedding of certain homogeneous spaces. Trans. A.M.S. 101, 211-223 (1961) Zbl0111.17902MR24 #A732
- [129] Sakane, Y. : On Compact Complex parallelisable Solvmanifolds. Osaka J. Math. 13, 187-219 (1976) Zbl0361.22005MR54 #10692
- [130] Scharlau, W. : Quadratic and hermitian forms. Grundlehren der mathematischen Wissenschaften, 270. Springer 1985 Zbl0584.10010MR86k:11022
- [131] Schur, I. : Über Gruppen periodischer Substitutionen. Sitzber. Preuss. Akad. Wiss., 619-627 (1911) Zbl42.0155.01JFM42.0155.01
- [132] Schur, I. : Zur Theorie vertauschbarer Matrizen. J. Reine Angew. Math. 30, 66-76 (1905) JFM36.0140.01
- [133] Serre, J.P. : Galois Cohomology. Translated from the French by Patrick Ion and revised by the author. Springer 1997 Zbl0902.12004MR98g:12007
- [134] Serre, J.P. : Cohomologie galoisienne. Lecture Notes in Mathematics, Springer 1994 Zbl0812.12002MR96b:12010
- [135] Shimura, G. ; Taniyama, Y. : Complex multiplications of abelian varieties and its applications to number theory. Publ. Math. Soc. Japan 6 (1961) Zbl0112.03502MR23 #A2419
- [136] Selberg, A. : On discontinuous groups in higher-dimensional symmetric spaces. in Contributions to function theory. Bombay 1960, p. 147-164 Zbl0201.36603MR24 #A188
- [137] Serre, J.P. : Sur les modules projectifs. Sem. Dubreil-Pisot exposé 2. (1960/1961) Zbl0132.41301
- [138] Snow, D. ; Winkelmann, J. : Homogeneous Manifolds with Large Automorphism Groups. Invent. math. (1998) Zbl0901.32022MR99f:32054
- [139] Spanier, E. : Algebraic Topology McGraw-Hill1966. Corrected Reprint : Springer 1981 Zbl0477.55001
- [140] Taubes, C.H. : The existence of self-dual conformal structures. J. Diff. Geom. 36, 163-253 (1992) Zbl0822.53006MR93j:53063
- [141] Thurston, W. : Threedimensional manifolds, Kleinian groups and Hyperbolic Geometry. Bull. A.M.S. 6, N.S. 357-381 (1982) Zbl0496.57005MR83h:57019
- [142] Thurston, W. : Three-dimensional geometry and topology. Vol. 1. Edited by Silvio Levy. Princeton Mathematical Series, 35. Princeton University Press 1997 Zbl0873.57001MR97m:57016
- [143] Tits, J. : Espaces homogènes complexes compacts. Comm. Math. Helv. 37 (1962), 111-120 Zbl0108.36302MR27 #4248
- [144] Tits, J. : Tabellen zu den eifachen Lie Gruppen und ihren Darstellungen. Springer LN 40. 1967 Zbl0166.29703
- [145] Tits, J. : Free subgroups in linear groups. J. Algebra 20, 250-270 (1972) Zbl0236.20032MR44 #4105
- [146] Ueno, K. : Classification Theory of Algebraic Varieties and Compact Complex Spaces. LN 439 Springer 1975 Zbl0299.14007MR58 #22062
- [147] Varouchas, J. : Kähler spaces and proper open morphisms. Math. Ann. 283, 13-52 (1989) Zbl0632.53059MR89m:32021
- [148] Vinberg, E.B. : Discrete groups generated by reflections in Lobachevsky spaces. Math. USSR Sbornik 1, 429-444 (1967)
- [149] Wang, H. : Complex parallelisable manifolds. Proc. A.M.S. 5, 771-776 (1954) Zbl0056.15403
- [150] Weil, A. : On discrete subgroups of Lie groups I, II. Ann. Math. 72, 369-384 (1960) and 75, 578-602 (1962) Zbl0131.26602MR25 #1241
- [151] Weil, A. : Remarks on the cohomology of groups. Ann. of Math. 80, 149-157 (1964) Zbl0192.12802MR30 #199
- [152] Winkelmann, J. : Every compact complex manifold admits a holomorphic vector bundle. Revue Roum. Math. Pures et Appl. 38, 743-744 (1993) Zbl0813.32025MR95a:32051
- [153] Winkelmann, J. : Complex-Analytic Geometry of Complex Parallelizable Manifolds. Habilitationsschrift. Ruhr-Universität Bochum. Schriftenreihe des Graduiertenkolleg, Heft 13 (1995) Zbl0918.32015
- [154] Holomorphic Functions on Algebraic Groups Invariant under a Zariski dense subgroup. 519-529 in Proc. Complex Analysis and Geometry. Lecture Notes in Pure and Applied Math., Dekker Inc. 1995 Zbl0856.32021
- [155] Winkelmann, J. : Complex Parallelizable Manifolds. Proc. Geometric Complex Analysis. 667-678 ed. by J. Noguchi et. al. World Scientific Publishing. Singapur 1996 Zbl0917.32005MR98g:32055
- [156] Winkelmann, J. : On Discrete Zariski Dense Subgroups of Algebraic Groups. Math. Nachr. 186, 285-302 (1997) Zbl0897.14015MR98d:20052
- [157] Winkelmann, J. : Only Countably Many Simply-Connected Lie Groups Admit Lattices. Complex Analysis and Geometry. Pitman Research Notes in Mathematics Series. V. Ancona, E. Ballico, R. Miro-Roig, A. Silva eds. Zbl0915.22007
- [158] Winkelmann, J. : Holomorphic self-maps of Parallelizable Manifolds. Transformation Groups. (1998) Zbl0902.32009MR99c:57068
- [159] Winkelmann, J. : Homogeneous Vector bundles on Parallelizable Manifolds. (to appear) Zbl1005.32017
- [160] Winkelmann, J. : The Albanese Variety of a Complex Parallelizable Manifold. (to appear).
- [161] Winkelmann, J. : Arithmeticity of complex nilmanifolds. (to appear)
- [162] Wu, T.S. : A Note on a Theorem on lattices in Lie Groups. Canad. Math. Bull. 31 (2), (1988) Zbl0653.22009MR89e:22017
- [163] Zimmer, R. : Ergodic Theory and Semisimple Groups. Birkhäuser 1984 Zbl0571.58015MR86j:22014
Citations in EuDML Documents
top- Nicolas Marteau, Équations aux différences associées à des groupes, fonctions représentatives.
- Edoardo Ballico, Holomorphic vector bundles on certain holomorphically convex complex manifolds
- Frédéric Bosio, Variétés complexes compactes : une généralisation de la construction de Meersseman et López de Medrano-Verjovsky
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.