Sous-groupes discrets des groupes de Lie : rigidité, arithméticité

Pierre Pansu

Séminaire Bourbaki (1993-1994)

  • Volume: 36, page 69-105
  • ISSN: 0303-1179

How to cite

top

Pansu, Pierre. "Sous-groupes discrets des groupes de Lie : rigidité, arithméticité." Séminaire Bourbaki 36 (1993-1994): 69-105. <http://eudml.org/doc/110194>.

@article{Pansu1993-1994,
author = {Pansu, Pierre},
journal = {Séminaire Bourbaki},
keywords = {arithmetic subgroups; semi-simple Lie groups; lattices; rigidity theorems; Matsushima's vanishing theorem; harmonic map; superrigidity; Kähler manifolds; representation spaces},
language = {fre},
pages = {69-105},
publisher = {Société Mathématique de France},
title = {Sous-groupes discrets des groupes de Lie : rigidité, arithméticité},
url = {http://eudml.org/doc/110194},
volume = {36},
year = {1993-1994},
}

TY - JOUR
AU - Pansu, Pierre
TI - Sous-groupes discrets des groupes de Lie : rigidité, arithméticité
JO - Séminaire Bourbaki
PY - 1993-1994
PB - Société Mathématique de France
VL - 36
SP - 69
EP - 105
LA - fre
KW - arithmetic subgroups; semi-simple Lie groups; lattices; rigidity theorems; Matsushima's vanishing theorem; harmonic map; superrigidity; Kähler manifolds; representation spaces
UR - http://eudml.org/doc/110194
ER -

References

top
  1. [A] E. Andreev, Convex polyhedra of finite volume in Lobachevski space, Mat. Sb.83 (1970), 256-260. Zbl0203.54904MR273510
  2. [A-B] N. A'Campo et M. Burger, Une preuve du théorème de superrigidité de G.A. Margulis, Preprint Université de Basel, (1991). 
  3. [B-M-S] H. Bass, J. Milnor and J.-P. Serre, Solution of the congruence subgroup prob- 
  4. lem for SLn (n ≥ 3) and Sp2n (n ≥ 2), Publ. Math. I. H. E. S.33 (1967), 59-137. 
  5. [Bo] R. Borcherds, Automorphism groups of Lorentzian lattices, J. of Algebra111 (1987), 133-153. Zbl0628.20003MR913200
  6. [B1] A. Borel, On the curvature tensor of the hermitian symmetric manifolds, Ann. of Math.71 (1960), 508-521. Zbl0100.36101MR111059
  7. [B2] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology2 (1963), 111-122. Zbl0116.38603MR146301
  8. [B3] A. Borel, Introduction aux groupes arithmétiques, Hermann, Paris (1969). Zbl0186.33202MR244260
  9. [B-W] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups and representations of reductive groups, Ann. Math. Studies, Princeton University Press, Princeton, N.J. (1980). Zbl0443.22010MR554917
  10. [B-T] F. Bruhat et J. Tits, Groupes réductifs sur un corps local, Publ. Math. I. H. E. S.41 (1972), 5-252. Zbl0254.14017MR327923
  11. [C] E. Calabi, On compact Riemannian manifolds with constant curvature I, in "Differential Geometry", Proc. Symp. Pure Math.3, Amer. Math. Soc., Providence, R.I. (1961), 155-180. Zbl0129.14102MR133787
  12. [C-T] J. Carlson and D. Toledo, Harmonic mappings of Kähler manifolds to locally symmetric spaces, Publ. Math. I.H.E.S.69 (1989), 173-201. Zbl0695.58010MR1019964
  13. [C-V] E. Calabi and E. Vesentini, On compact locally symmetric Kähler manifolds, Ann. of Math.71 (1960), 472-507. Zbl0100.36002MR111058
  14. [C-W] P. Cohen et J. Wolfart, Fonctions hypergéométriques en plusieurs variables et espaces de modules de variétés abéliennes, Ann. Sci. Ec. Norm. Sup. Paris26 (1993), 665-690. Zbl0822.14014MR1251148
  15. [Co1] K. Corlette, Flat G-bundles with canonical metrics, J. Differen. Geom.28 (1988), 361-382. Zbl0676.58007MR965220
  16. [Co2] K. Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of Math.135 (1992), 165-182. Zbl0768.53025MR1147961
  17. [D-K] C. Delaroche et A. Kirillov, Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés, Séminaire Bourbaki, Exposé n° 343, (1967-68), Benjamin, New York (1969). Zbl0214.04602
  18. [D-M] P. Deligne and G.D. Mostow, Monodromy of hypergeometric functions and non lattice integral monodromy, Publ. Math. I.H.E.S.63 (1986), 5-89. Zbl0615.22008MR849651
  19. [E-S] J. Eells and J. Sampson, Harmonic maps of Riemannian manifolds, Amer. J. Math.86 (1964), 109-160. Zbl0122.40102MR164306
  20. [F] H. Furstenberg, Poisson boundaries and envelopes of discrete groups, Bull. Amer. Math. Soc.73 (1967), 350-356. Zbl0184.33105MR210812
  21. [Ga1] H. Garland, A rigidity theorem for discrete subgroups, Trans. Amer. Math. Soc.129 (1967), 1-25. Zbl0225.22016MR214102
  22. [Ga2] H. Garland, p-adic curvature and the cohomology of discrete subgroups of p-adic groups, Ann. of Math.97 (1973), 375-423. Zbl0262.22010MR320180
  23. [G-M] W. Goldman and J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Publ. Math. I.H.E.S.67 (1988), 43-96. Zbl0678.53059MR972343
  24. [G1] M. Gromov, Hyperbolic groups, in "Essays in group theory", ed. S. Gersten, Springer Verlag, Heidelberg (1987), 75-265. Zbl0634.20015MR919829
  25. [G2] M. Gromov, The foliated Plateau problem I, Geom. Functional Anal.1 (1992), 14-79 ; idem : II, ibidem253-320. Zbl0768.53012MR1091610
  26. [G-P] M. Gromov and I. Piatetski-Shapiro, Non-arithmetic groups in Lobachevsky spaces, Publ. Math. I. H. E. S.66 (1988), 93-103. Zbl0649.22007MR932135
  27. [G-S] M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. Math. I.H.E.S.76 (1992), 165-246. Zbl0896.58024MR1215595
  28. [H] N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc.55 (1987), 59-126. Zbl0634.53045MR887284
  29. [H-V] P. de la Harpe et P. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque175, Soc. Math. de France (1989). Zbl0759.22001
  30. [J-Y] J. Jost and S.T. Yau, Harmonic maps and superrigidity, Proc. Symp. Pure Math.54 (1993), 245-280. Zbl0806.58012MR1216587
  31. [K-N] S. Kaneyuki and T. Nagano, On certain quadratic forms related to symmetric Riemannian spaces, Osaka Math. J.14 (1962), 241-252. Zbl0114.13403MR159347
  32. [K-L] A. Katok and J. Lewis, Global rigidity results for lattice actions on tori and new examples of volume preserving actions, Preprint Pennsylvania State University (1991). Zbl0857.57038MR1380646
  33. [K] D. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups, Funkc. Anal. i Prilozh.67 (1967), 71-74. Zbl0168.27602MR209390
  34. [Kh] A.G. Khovanski, Hyperplane section of polyhedra, toroidal manifolds and discrete groups in Lobatchevski space, Funkc. Anal. i Prilozh.20 (1986), 50-61. Zbl0597.51014MR831049
  35. [La] F. Labourie, Existence d'applications harmoniques tordues à valeurs dans les variétés à courbure négative, Proc. Amer. Math. Soc.111 (1991), 877-882. Zbl0783.58016MR1049845
  36. [Lu] A. Lubotsky, Trees and discrete subgroups of Lie groups over locla fields, Bull. Amer. Math. Soc.20 (1989), 27-30. Zbl0676.22007MR945301
  37. [Ma1] G.A. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, Amer. Math. Soc. Transl.109 (1977), 33-45. Zbl0367.57012MR492072
  38. [Ma2] G.A. Margulis, Arithmeticity and finite dimensional representations of uni- form lattices, Funkc. Anal. i Prilozh.8 (1974), 258-259. Zbl0303.22005MR357689
  39. [Ma3] G.A. Margulis, Discrete subgroups of semisimple Lie groups, Ergeb. der Math. Band 17, Springer Verlag, Berlin (1990). Zbl0732.22008MR1090825
  40. [Mat] Y. Matsushima, On the first Betti number of compact quotient spaces of higher-dimensional symmetric spaces, Ann. of Math.75 (1962), 312-330. Zbl0118.38303MR158406
  41. [Mok] N. Mok, Metric rigidity theorems on Hermitian locally symmetric manifolds, World Sci., Singapore (1989). Zbl0912.32026MR1081948
  42. [M1] G.D. Mostow, Quasiconformal mappings in n-space and the rigidity of hyperbolic space forms, Publ. Math. I.H.E.S.34 (1967), 53-104. Zbl0189.09402MR1055358
  43. [M2] G.D. Mostow, The rigidity of locally symmetric spaces, Proc. Intern. Congress of Math. (1970), 187-197. Zbl0224.53028MR419683
  44. [M3] G.D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Math. Studies, Study 78, Princeton Univ. Press, Princeton N.J. (1973). Zbl0265.53039MR385004
  45. [M4] G.D. Mostow, Discrete subgroups of Lie groups, in "Elie Cartan et les Mathématiques d'aujourd'hui", Astérisque, numéro hors série (1985), 289-309. Zbl0605.22008MR837205
  46. [M5] G.D. Mostow, Generalized Picard lattices arising from half-integral conditions., Publ. Math. I.H.E.S.63 (1986), 91-106. Zbl0615.22009MR849652
  47. [M-S-Y] N. Mok, Y.T. Siu and S.K. Yeung, Geometric superrigidity, Invent. Math.113 (1993), 57-83. Zbl0808.53043MR1223224
  48. [Pr] M.N. Prokhorov, The absence of discrete reflexion groups with noncompact fundamental polyhedron of finite volume in Lobachevsky space of large dimension, Izvest. Mat. Nauk28 (1987), 401-411. Zbl0613.51010
  49. [Ru] O.P. Ruzmanov, Examples of nonarithmetic crystallographic Coxeter groups in n-dimensional Lobachevsky space for 6 ≤ n ≤ 10, Problems in group theory and homological algebra (1989). Zbl0765.20022
  50. [S] A. Selberg, On discontinuous groups in higher dimensional symmetric spaces, in "Intern. Coll. on Function Theory", Tata Institute of Fund. Research, Bombay, (1960), 147-164. Zbl0201.36603MR130324
  51. [Sa] J. Sampson, Applications of harmonic maps to Kähler geometry, Contemp. Math.49 (1986), 125-133. Zbl0605.58019MR833809
  52. [Si1] C. Simpson, Higgs bundles and local systems, Publ. Math. I. H. E. S.75 (1992), 5-95. Zbl0814.32003MR1179076
  53. [Si2] C. Simpson, Integrality of rigid local systems of rank two on a smooth pro- jective variety, Preprint Université de Toulouse (1992). MR1179076
  54. [Siu] Y.T. Siu, Complex analyticity of harmonic maps, and strong rigidity of compact Kähler manifolds, Ann. of Math.112 (1980), 73-111. Zbl0517.53058MR584075
  55. [Th1] W. Thurston, The geometry and topology of 3-manifolds, Princeton University Press, Princeton (1978). 
  56. [Th2] W. Thurston, Shape of polyhedra, Preprint Princeton Univ. (1987). 
  57. [T1] J. Tits, Classification of algebraic groups, in "Algebraic groups and discrete subgroups", Proc. Symp. Pure Math., Amer. Math. Soc., Providence, R.I., 9 (1966), 33-62 Zbl0238.20052MR224710
  58. [T2] J. Tits, Lectures on buildings of spherical type and finite B-N pairs, Lecture Notes Band 386, Springer Verlag, Heidelberg (1970). Zbl0295.20047
  59. [T3] J. Tits, Sur les travaux de Margulis, Séminaire Bourbaki, Exposé n° 482, (1975-76), Lect. Notes in Math. Vol 567, Springer Verlag, Berlin (1976). MR492073
  60. [To] D. Toledo, Representations of surface groups in PSU(n,1) with maximum characteristic number, J. Differen. Geom.29 (1989), 125-134. Zbl0676.57012MR978081
  61. [V] E.B. Vinberg, Geometry II, Encyclopedia of Math. Sci., Springer Verlag, Heidelberg, (1990). Zbl0786.00008
  62. [W-Z] McK. Wang and W. Ziller, Symmetric spaces and strongly isotropy irreducible spaces, Preprint Univ. of Pennsylvania (1991). MR1219904
  63. [W] A. Weil, On discrete subgroups of Lie groups II, Ann. of Math.75 (1962), 578-602. Zbl0131.26602MR137793
  64. [Z] R. Zimmer, Ergodic theory and semisimple groups, Monographs in Math. vol. 81, Birkhäuser, Basel (1984). Zbl0571.58015MR776417
  65. [Zuo] K. Zuo, Factorizations of nonrigid Zariski dense representations of π1 of projective algebraic manifolds, Preprint Universität Kaiserslautern (1991). 

Citations in EuDML Documents

top
  1. Édouard Lebeau, Applications harmoniques entre graphes finis et un théorème de superrigidité
  2. Édouard Lebeau, Applications harmoniques entre graphes finis et un théorème de superrigidité
  3. Christophe Soulé, Classes caractéristiques secondaires des fibrés plats
  4. Pierre Pansu, Formules de Matsushima, de Garland et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles
  5. Vincent Koziarz, Julien Maubon, Harmonic maps and representations of non-uniform lattices of PU ( m , 1 )
  6. Alain Valette, Nouvelles approches de la propriété (T) de Kazhdan
  7. Frédéric Paulin, Actions de groupes sur les arbres
  8. Jörg Winkelmann, Complex analytic geometry of complex parallelizable manifolds

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.