Nowhere-zero -flows of supergraphs.
In this paper Gallai’s inequality on the number of edges in critical graphs is generalized for reducible additive induced-hereditary properties of graphs in the following way. Let (k ≥ 2) be additive induced-hereditary properties, and . Suppose that G is an -critical graph with n vertices and m edges. Then 2m ≥ δn + (δ-2)/(δ²+2δ-2)*n + (2δ)/(δ²+2δ-2) unless = ² or . The generalization of Gallai’s inequality for -choice critical graphs is also presented.
We show for every k ≥ 1 that the binomial tree of order 3k has a vertex-coloring with 2k+1 colors such that every path contains some color odd number of times. This disproves a conjecture from [1] asserting that for every tree T the minimal number of colors in a such coloring of T is at least the vertex ranking number of T minus one.
Let be the least number for which there exists a simple graph with vertices having precisely spanning trees. Similarly, define as the least number for which there exists a simple graph with edges having precisely spanning trees. As an -cycle has exactly spanning trees, it follows that . In this paper, we show that and if and only if , which is a subset of Euler’s idoneal numbers. Moreover, if and we show that and This improves some previously estabilished bounds.
A well-known theorem of Hajós claims that every graph with chromathic number greater than k can be constructed from disjoint copies of the complete graph by repeated application of three simple operations. This classical result has been extended in 1978 to colorings of hypergraphs by C. Benzaken and in 1996 to list-colorings of graphs by S. Gravier. In this note, we capture both variations to extend Hajós’ theorem to list-colorings of hypergraphs.
An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB) model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice...
Page 1