Controllability on the group of diffeomorphisms
We study Hamiltonian systems which generate extremal flows of regular variational problems on smooth manifolds and demonstrate that negativity of the generalized curvature of such a system implies the existence of a global smooth optimal synthesis for the infinite horizon problem. We also show that in the Euclidean case negativity of the generalized curvature is a consequence of the convexity of the Lagrangian with respect to the pair of arguments. Finally, we give a generic classification for...
We study sub-Riemannian (Carnot-Caratheodory) metrics defined by noninvolutive distributions on real-analytic Riemannian manifolds. We establish a connection between regularity properties of these metrics and the lack of length minimizing abnormal geodesics. Utilizing the results of the previous study of abnormal length minimizers accomplished by the authors in [Annales IHP. , p. 635-690] we describe in this paper two classes of the germs of distributions (called 2-generating and medium fat) such...
This article deals with the local sub-Riemannian geometry on ℜ, () where is the distribution ker being the Martinet one-form : and is a Riemannian metric on . We prove that we can take as a sum of squares . Then we analyze the flat case where 1. We parametrize the set of geodesics using elliptic integrals. This allows to compute the exponential mapping, the wave front, the conjugate and cut loci and the sub-Riemannian sphere. A direct consequence of our computations is to show that...
Page 1