The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 27

Showing per page

Order by Relevance | Title | Year of publication

A comparison on the commutative neutrix convolution of distributions and the exchange formula

Adem Kiliçman — 2001

Czechoslovak Mathematical Journal

Let f ˜ , g ˜ be ultradistributions in 𝒵 ' and let f ˜ n = f ˜ * δ n and g ˜ n = g ˜ * σ n where { δ n } is a sequence in 𝒵 which converges to the Dirac-delta function δ . Then the neutrix product f ˜ g ˜ is defined on the space of ultradistributions 𝒵 ' as the neutrix limit of the sequence { 1 2 ( f ˜ n g ˜ + f ˜ g ˜ n ) } provided the limit h ˜ exist in the sense that N - l i m n 1 2 f ˜ n g ˜ + f ˜ g ˜ n , ψ = h ˜ , ψ for all ψ in 𝒵 . We also prove that the neutrix convolution product f * g exist in 𝒟 ' , if and only if the neutrix product f ˜ g ˜ exist in 𝒵 ' and the exchange formula F ( f * g ) = f ˜ g ˜ is then satisfied.

Page 1 Next

Download Results (CSV)