Deformation quantization
We define a distance between submanifolds of a riemannian manifold and show that, if a compact submanifold is not moved too much under the isometric action of a compact group , there is a -invariant submanifold -close to . The proof involves a procedure of averaging nearby submanifolds of riemannian manifolds in a symmetric way. The procedure combines averaging techniques of Cartan, Grove/Karcher, and de la Harpe/Karoubi with Whitney’s idea of realizing submanifolds as zeros of sections...
We study the group of diffeomorphisms of a 3-dimensional Poisson torus which preserve the Poisson structure up to a constant multiplier, and the group of similarity ratios.
We define a -algebraic quantization of constant Dirac structures on tori and prove that -equivalent structures have Morita equivalent quantizations. This completes and extends from the Poisson case a theorem of Rieffel and Schwarz.
Let be a complex manifold with strongly pseudoconvex boundary . If is a defining function for , then is plurisubharmonic on a neighborhood of in , and the (real) 2-form is a symplectic structure on the complement of in a neighborhood of in ; it blows up along . The Poisson structure obtained by inverting extends smoothly across and determines a contact structure on which is the same as the one induced by the complex structure. When is compact, the Poisson structure near...
Page 1