Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

On almost discrete space

Ali Akbar Estaji — 2008

Archivum Mathematicum

Let C ( X ) be the ring of real continuous functions on a completely regular Hausdorff space. In this paper an almost discrete space is determined by the algebraic structure of C ( X ) . The intersection of essential weak ideal in C ( X ) is also studied.

On a -Kasch spaces

Ali Akbar EstajiMelvin Henriksen — 2010

Archivum Mathematicum

If X is a Tychonoff space, C ( X ) its ring of real-valued continuous functions. In this paper, we study non-essential ideals in C ( X ) . Let a be a infinite cardinal, then X is called a -Kasch (resp. a ¯ -Kasch) space if given any ideal (resp. z -ideal) I with gen ( I ) < a then I is a non-essential ideal. We show that X is an 0 -Kasch space if and only if X is an almost P -space and X is an 1 -Kasch space if and only if X is a pseudocompact and almost P -space. Let C F ( X ) denote the socle of C ( X ) . For a topological space X with only...

The clean elements of the ring ( L )

Ali Akbar EstajiMaryam Taha — 2024

Czechoslovak Mathematical Journal

We characterize clean elements of ( L ) and show that α ( L ) is clean if and only if there exists a clopen sublocale U in L such that 𝔠 L ( coz ( α - 1 ) ) U 𝔬 L ( coz ( α ) ) . Also, we prove that ( L ) is clean if and only if ( L ) has a clean prime ideal. Then, according to the results about ( L ) , we immediately get results about 𝒞 c ( L ) .

Some properties of algebras of real-valued measurable functions

Ali Akbar EstajiAhmad Mahmoudi Darghadam — 2023

Archivum Mathematicum

Let M ( X , 𝒜 ) ( M * ( X , 𝒜 ) ) be the f -ring of all (bounded) real-measurable functions on a T -measurable space ( X , 𝒜 ) , let M K ( X , 𝒜 ) be the family of all f M ( X , 𝒜 ) such that coz ( f ) is compact, and let M ( X , 𝒜 ) be all f M ( X , 𝒜 ) that { x X : | f ( x ) | 1 n } is compact for any n . We introduce realcompact subrings of M ( X , 𝒜 ) , we show that M * ( X , 𝒜 ) is a realcompact subring of M ( X , 𝒜 ) , and also M ( X , 𝒜 ) is a realcompact if and only if ( X , 𝒜 ) is a compact measurable space. For every nonzero real Riesz map ϕ : M ( X , 𝒜 ) , we prove that there is an element x 0 X such that ϕ ( f ) = f ( x 0 ) for every f M ( X , 𝒜 ) if ( X , 𝒜 ) is a compact measurable space. We confirm...

On minimal ideals in the ring of real-valued continuous functions on a frame

Abolghasem Karimi FeizabadiAli Akbar EstajiMostafa Abedi — 2018

Archivum Mathematicum

Let L be the ring of real-valued continuous functions on a frame L . The aim of this paper is to study the relation between minimality of ideals I of L and the set of all zero sets in L determined by elements of I . To do this, the concepts of coz-disjointness, coz-spatiality and coz-density are introduced. In the case of a coz-dense frame L , it is proved that the f -ring L is isomorphic to the f -ring C ( Σ L ) of all real continuous functions on the topological space Σ L . Finally, a one-one correspondence is...

Page 1

Download Results (CSV)