The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

The cleanness of (symbolic) powers of Stanley-Reisner ideals

Somayeh BandariAli Soleyman Jahan — 2017

Czechoslovak Mathematical Journal

Let Δ be a pure simplicial complex on the vertex set [ n ] = { 1 , ... , n } and I Δ its Stanley-Reisner ideal in the polynomial ring S = K [ x 1 , ... , x n ] . We show that Δ is a matroid (complete intersection) if and only if S / I Δ ( m ) ( S / I Δ m ) is clean for all m and this is equivalent to saying that S / I Δ ( m ) ( S / I Δ m , respectively) is Cohen-Macaulay for all m . By this result, we show that there exists a monomial ideal I with (pretty) cleanness property while S / I m or S / I ( m ) is not (pretty) clean for all integer m 3 . If dim ( Δ ) = 1 , we also prove that S / I Δ ( 2 ) ( S / I Δ 2 ) is clean if and only if S / I Δ ( 2 ) ( S / I Δ 2 ,...

The linear syzygy graph of a monomial ideal and linear resolutions

Erfan ManouchehriAli Soleyman Jahan — 2021

Czechoslovak Mathematical Journal

For each squarefree monomial ideal I S = k [ x 1 , ... , x n ] , we associate a simple finite graph G I by using the first linear syzygies of I . The nodes of G I are the generators of I , and two vertices u i and u j are adjacent if there exist variables x , y such that x u i = y u j . In the cases, where G I is a cycle or a tree, we show that I has a linear resolution if and only if I has linear quotients and if and only if I is variable-decomposable. In addition, with the same assumption on G I , we characterize all squarefree monomial ideals with a...

Pretty cleanness and filter-regular sequences

Somayeh BandariKamran Divaani-AazarAli Soleyman Jahan — 2014

Czechoslovak Mathematical Journal

Let K be a field and S = K [ x 1 , ... , x n ] . Let I be a monomial ideal of S and u 1 , ... , u r be monomials in S . We prove that if u 1 , ... , u r form a filter-regular sequence on S / I , then S / I is pretty clean if and only if S / ( I , u 1 , ... , u r ) is pretty clean. Also, we show that if u 1 , ... , u r form a filter-regular sequence on S / I , then Stanley’s conjecture is true for S / I if and only if it is true for S / ( I , u 1 , ... , u r ) . Finally, we prove that if u 1 , ... , u r is a minimal set of generators for I which form either a d -sequence, proper sequence or strong s -sequence (with respect to the reverse lexicographic...

Page 1

Download Results (CSV)