Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Critical constants for recurrence of random walks on G -spaces

Anna Erschler — 2005

Annales de l’institut Fourier

We introduce the notion of a critical constant c r t for recurrence of random walks on G -spaces. For a subgroup H of a finitely generated group G the critical constant is an asymptotic invariant of the quotient G -space G / H . We show that for any infinite G -space c r t 1 / 2 . We say that G / H is very small if c r t < 1 . For a normal subgroup H the quotient space G / H is very small if and only if it is finite. However, we give examples of infinite very small G -spaces. We show also that critical constants for recurrence can be used...

Homomorphisms to constructed from random walks

Anna ErschlerAnders Karlsson — 2010

Annales de l’institut Fourier

We give a construction of homomorphisms from a group into the reals using random walks on the group. The construction is an alternative to an earlier construction that works in more general situations. Applications include an estimate on the drift of random walks on groups of subexponential growth admitting no nontrivial homomorphism to the integers and inequalities between the asymptotic drift and the asymptotic entropy. Some of the entropy estimates obtained have applications independent of the...

Groups of given intermediate word growth

Laurent BartholdiAnna Erschler — 2014

Annales de l’institut Fourier

We show that there exists a finitely generated group of growth f for all functions f : + + satisfying f ( 2 R ) f ( R ) 2 f ( η + R ) for all R large enough and η + 2 . 4675 the positive root of X 3 - X 2 - 2 X - 4 . Set α - = log 2 / log η + 0 . 7674 ; then all functions that grow uniformly faster than exp ( R α - ) are realizable as the growth of a group. We also give a family of sum-contracting branched groups of growth exp ( R α ) for a dense set of α [ α - , 1 ] .

Page 1

Download Results (CSV)