Transformations dilatantes de l'intervalle [0,1] et théorèmes limites
Étant donné un arbre et un groupe d’automorphismes de , nous étudions les propriétés markoviennes du flot géodésique sur le quotient de l’espace des géodésiques de par . Par exemple, quand est l’arbre de Bruhat-Tits d’un groupe algébrique linéaire connexe semi-simple de rang 1 sur un corps local non archimédien et si est un réseau (éventuellement non uniforme) dans , nous montrons que l’action des puissances paires de la transformation géodésique est Bernoulli d’entropie finie sur...
On montre que les exposants de Lyapunov de l’algorithme de Jacobi-Perron, en dimension quelconque, sont tous différents et que la somme des exposants extrêmes est strictement positive. En particulier, si , le deuxième exposant est strictement négatif.
Page 1