An extension of the Krein-Smulian theorem.
Let X be a Banach space, u ∈ X** and K, Z two subsets of X**. Denote by d(u,Z) and d(K,Z) the distances to Z from the point u and from the subset K respectively. The Krein-Smulian Theorem asserts that the closed convex hull of a weakly compact subset of a Banach space is weakly compact; in other words, every w*-compact subset K ⊂ X** such that d(K,X) = 0 satisfies d(cow*(K),X) = 0. We extend this result in the following way: if Z ⊂ X is a closed subspace of X and...