The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let X be a Banach space, u ∈ X** and K, Z two subsets of X**. Denote by d(u,Z) and d(K,Z) the distances to Z from the point u and from the subset K respectively. The Krein-Smulian Theorem asserts that the closed convex hull of a weakly compact subset of a Banach space is weakly compact; in other words, every w*-compact subset K ⊂ X** such that d(K,X) = 0 satisfies d(cow*(K),X) = 0.
We extend this result in the following way: if Z ⊂ X is a closed subspace of X and...
If X is a Banach space and C a convex subset of X*, we investigate whether the distance from to C is M-controlled by the distance d̂(K,C) (that is, if for some 1 ≤ M < ∞), when K is any weak*-compact subset of X*. We prove, for example, that: (i) C has 3-control if C contains no copy of the basis of ℓ₁(c); (ii) C has 1-control when C ⊂ Y ⊂ X* and Y is a subspace with weak*-angelic closed dual unit ball B(Y*); (iii) if C is a convex subset of X and X is considered canonically embedded into...
If X is a Banach space and C ⊂ X a convex subset, for x** ∈ X** and A ⊂ X** let d(x**,C) = inf||x**-x||: x ∈ C be the distance from x** to C and d̂(A,C) = supd(a,C): a ∈ A. Among other things, we prove that if X is an order-continuous Banach lattice and K is a w*-compact subset of X** we have: (i) and, if K ∩ X is w*-dense in K, then ; (ii) if X fails to have a copy of ℓ₁(ℵ₁), then ; (iii) if X has a 1-symmetric basis, then .
Let be a Banach space and (resp., ) the subset of elements such that there exists a sequence such that in the -topology of (resp., there exists a separable subspace such that ). Then: (i) if , the property (resp., ) is -determined, i.e., has this property iff has, for every subspace with ; (ii) if , has countable tightness; (iii) under the Martin’s axiom we have iff has countable tightness and for every subspace , every -compact subset of , and every...
Download Results (CSV)