The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we introduce the concept of bipolar-valued fuzzification of ordered 𝓐𝓖-groupoids and discuss some structural properties of bipolar-valued fuzzy two-sided ideals of an intra-regular ordered 𝓐𝓖-groupoid.
In this paper, we introduce the notion of a bi-BL-algebra, bi-filter, bi-deductive system and bi-Boolean elements of a bi-BL-algebra and deal with bi-filters in bi-BL-algebra. We study this structure and construct the quotient of bi-BL-algebra. Also present a classification for examples of proper bi-BL-algebras.
We introduce Engel elements in a BCI-algebra by using left and right normed commutators, and some properties of these elements are studied. The notion of -Engel BCI-algebra as a natural generalization of commutative BCI-algebras is introduced, and we discuss Engel BCI-algebra, which is defined by left and right normed commutators. In particular, we prove that any nilpotent BCI-algebra of type is an Engel BCI-algebra, but solvable BCI-algebras are not Engel, generally. Also, it is proved that...
The present study aimed to introduce -fold interval valued residuated lattice (IVRL for short) filters in triangle algebras. Initially, the notions of -fold (positive) implicative IVRL-extended filters and -fold (positive) implicative triangle algebras were defined. Afterwards, several characterizations of the algebras were presented, and the correlations between the -fold IVRL-extended filters, -fold (positive) implicative algebras, and the Gödel triangle algebra were discussed.
The main goal of this paper is to investigate very true MTL-algebras and prove the completeness of the very true MTL-logic. In this paper, the concept of very true operators on MTL-algebras is introduced and some related properties are investigated. Also, conditions for an MTL-algebra to be an MV-algebra and a Gödel algebra are given via this operator. Moreover, very true filters on very true MTL-algebras are studied. In particular, subdirectly irreducible very true MTL-algebras are characterized...
The notions of a dual pseudo-Q algebra and a dual pseudo-QC algebra are introduced. The properties and characterizations of them are investigated. Conditions for a dual pseudo-Q algebra to be a dual pseudo-QC algebra are given. Commutative dual pseudo-QC algebras are considered. The interrelationships between dual pseudo-Q/QC algebras and other pseudo algebras are visualized in a diagram.
Hilbert algebras are important tools for certain investigations in intuitionistic logic and other non-classical logic and as a generalization of Hilbert algebra a new algebraic structure, called a GE-algebra (generalized exchange algebra), is introduced and studied its properties. We consider filters, upper sets and congruence kernels in a GE-algebra. We also characterize congruence kernels of transitive GE-algebras.
In this paper, we introduce the notion of pseudo BE-algebra which is a generalization of BE-algebra. We define the concepts of pseudo subalgebras and pseudo filters and prove that, under some conditions, pseudo subalgebra can be a pseudo filter. We prove that every homomorphic image and pre-image of a pseudo filter is also a pseudo filter. Furthermore, the notion of pseudo upper sets in pseudo BE-algebras introduced and is proved that every pseudo filter is an union of pseudo upper sets.
Download Results (CSV)