The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On the composition factors of a group with the same prime graph as B n ( 5 )

Azam BabaiBehrooz Khosravi — 2012

Czechoslovak Mathematical Journal

Let G be a finite group. The prime graph of G is a graph whose vertex set is the set of prime divisors of | G | and two distinct primes p and q are joined by an edge, whenever G contains an element of order p q . The prime graph of G is denoted by Γ ( G ) . It is proved that some finite groups are uniquely determined by their prime graph. In this paper, we show that if G is a finite group such that Γ ( G ) = Γ ( B n ( 5 ) ) , where n 6 , then G has a unique nonabelian composition factor isomorphic to B n ( 5 ) or C n ( 5 ) .

Recognition of some families of finite simple groups by order and set of orders of vanishing elements

Maryam KhatamiAzam Babai — 2018

Czechoslovak Mathematical Journal

Let G be a finite group. An element g G is called a vanishing element if there exists an irreducible complex character χ of G such that χ ( g ) = 0 . Denote by Vo ( G ) the set of orders of vanishing elements of G . Ghasemabadi, Iranmanesh, Mavadatpour (2015), in their paper presented the following conjecture: Let G be a finite group and M a finite nonabelian simple group such that Vo ( G ) = Vo ( M ) and | G | = | M | . Then G M . We answer in affirmative this conjecture for M = S z ( q ) , where q = 2 2 n + 1 and either q - 1 , q - 2 q + 1 or q + 2 q + 1 is a prime number, and M = F 4 ( q ) , where q = 2 n and either...

Thompson’s conjecture for the alternating group of degree 2 p and 2 p + 1

Azam BabaiAli Mahmoudifar — 2017

Czechoslovak Mathematical Journal

For a finite group G denote by N ( G ) the set of conjugacy class sizes of G . In 1980s, J. G. Thompson posed the following conjecture: If L is a finite nonabelian simple group, G is a finite group with trivial center and N ( G ) = N ( L ) , then G L . We prove this conjecture for an infinite class of simple groups. Let p be an odd prime. We show that every finite group G with the property Z ( G ) = 1 and N ( G ) = N ( A i ) is necessarily isomorphic to A i , where i { 2 p , 2 p + 1 } .

A new characterization of symmetric group by NSE

Azam BabaiZeinab Akhlaghi — 2017

Czechoslovak Mathematical Journal

Let G be a group and ω ( G ) be the set of element orders of G . Let k ω ( G ) and m k ( G ) be the number of elements of order k in G . Let nse ( G ) = { m k ( G ) : k ω ( G ) } . Assume r is a prime number and let G be a group such that nse ( G ) = nse ( S r ) , where S r is the symmetric group of degree r . In this paper we prove that G S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.

Page 1

Download Results (CSV)