The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

On normal lattice configurations and simultaneously normal numbers

Mordechay B. Levin — 2001

Journal de théorie des nombres de Bordeaux

Let q , q 1 , , q s 2 be integers, and let α 1 , α 2 , be a sequence of real numbers. In this paper we prove that the lower bound of the discrepancy of the double sequence ( α m q n , , α m + s - 1 q n ) m , n = 1 M N coincides (up to a logarithmic factor) with the lower bound of the discrepancy of ordinary sequences ( x n ) n = 1 M N in s -dimensional unit cube ( s , M , N = 1 , 2 , ) . We also find a lower bound of the discrepancy (up to a logarithmic factor) of the sequence ( α 1 q 1 n , , α s q s n ) n = 1 N (Korobov’s problem).

A multiparameter variant of the Salem-Zygmund central limit theorem on lacunary trigonometric series

Mordechay B. Levin — 2013

Colloquium Mathematicae

We prove the central limit theorem for the multisequence 1 n N 1 n d N d a n , . . . , n d c o s ( 2 π m , A n . . . A d n d x ) where m s , a n , . . . , n d are reals, A , . . . , A d are partially hyperbolic commuting s × s matrices, and x is a uniformly distributed random variable in [ 0 , 1 ] s . The main tool is the S-unit theorem.

On linear normal lattices configurations

Mordechay B. LevinMeir Smorodinsky — 2005

Journal de Théorie des Nombres de Bordeaux

In this paper we extend Champernowne’s construction of normal numbers in base b to the d case and obtain an explicit construction of the generic point of the d shift transformation of the set { 0 , 1 , . . . , b - 1 } d . We prove that the intersection of the considered lattice configuration with an arbitrary line is a normal sequence in base b .

Page 1

Download Results (CSV)