In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.
This paper presents a Komlós theorem that extends to the case of the set-valued Henstock-Kurzweil-Pettis integral a result obtained by Balder and Hess (in the integrably bounded case) and also a result of Hess and Ziat (in the Pettis integrability setting). As applications, a solution to a best approximation problem is given, weak compactness results are deduced and, finally, an existence theorem for an integral inclusion involving the Henstock-Kurzweil-Pettis set-valued integral is obtained.
In the present work we prove that, in the space of Pettis integrable functions, any subset that is decomposable and closed with respect to the topology induced by the so-called Alexiewicz norm (where ) is convex. As a consequence, any such family of Pettis integrable functions is also weakly closed.
In this paper we consider the nonlocal (nonstandard) Cauchy problem for differential inclusions in Banach spaces
x'(t) ∈ F(t,x(t)), x(0)=g(x), t ∈ [0,T] = I.
Investigation over some multivalued integrals allow us to prove the existence of solutions for considered problem. We concentrate on the problems for which the assumptions are expressed in terms of the weak topology in a Banach space. We recall and improve earlier papers of this type. The paper is complemented...
Download Results (CSV)