We construct a concrete example of a -parameter family of smooth projective geometrically integral varieties over an open subscheme of such that there is exactly one rational fiber with no rational points. This makes explicit a construction of Poonen.
Given any global field of characteristic , we construct a Châtelet surface over that fails to satisfy the Hasse principle. This failure is due to a Brauer-Manin obstruction. This construction extends a result of Poonen to characteristic , thereby showing that the étale-Brauer obstruction is insufficient to explain all failures of the Hasse principle over a global field of any characteristic.
In [], the authors proved an explicit formula for the arithmetic intersection number on the Siegel moduli space of abelian surfaces, under some assumptions on the quartic CM field . These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus curves for use in cryptography. One of the main tools in the proof was a previous result of the authors [] generalizing the singular moduli formula of Gross and...
Download Results (CSV)