The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On path-quasar Ramsey numbers

Binlong LiBo Ning — 2015

Annales UMCS, Mathematica

Let G1 and G2 be two given graphs. The Ramsey number R(G1,G2) is the least integer r such that for every graph G on r vertices, either G contains a G1 or Ḡ contains a G2. Parsons gave a recursive formula to determine the values of R(Pn,K1,m), where Pn is a path on n vertices and K1,m is a star on m+1 vertices. In this note, we study the Ramsey numbers R(Pn,K1,m), where Pn is a linear forest on m vertices. We determine the exact values of R(Pn,K1∨Fm) for the cases m ≤ n and m ≥ 2n, and for the case...

Heavy Subgraphs, Stability and Hamiltonicity

Binlong LiBo Ning — 2017

Discussiones Mathematicae Graph Theory

Let G be a graph. Adopting the terminology of Broersma et al. and Čada, respectively, we say that G is 2-heavy if every induced claw (K1,3) of G contains two end-vertices each one has degree at least |V (G)|/2; and G is o-heavy if every induced claw of G contains two end-vertices with degree sum at least |V (G)| in G. In this paper, we introduce a new concept, and say that G is S-c-heavy if for a given graph S and every induced subgraph G′ of G isomorphic to S and every maximal clique C of G′, every...

Hamilton cycles in almost distance-hereditary graphs

Bing ChenBo Ning — 2016

Open Mathematics

Let G be a graph on n ≥ 3 vertices. A graph G is almost distance-hereditary if each connected induced subgraph H of G has the property dH(x, y) ≤ dG(x, y) + 1 for any pair of vertices x, y ∈ V(H). Adopting the terminology introduced by Broersma et al. and Čada, a graph G is called 1-heavy if at least one of the end vertices of each induced subgraph of G isomorphic to K1,3 (a claw) has degree at least n/2, and is called claw-heavy if each claw of G has a pair of end vertices with degree sum at least...

On path-quasar Ramsey numbers

Binlong LiBo Ning — 2014

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica

Let G 1 and G 2 be two given graphs. The Ramsey number R ( G 1 , G 2 ) is the least integer r such that for every graph G on r vertices, either G contains a G 1 or G ¯ contains a G 2 . Parsons gave a recursive formula to determine the values of R ( P n , K 1 , m ) , where P n is a path on n vertices and K 1 , m is a star on m + 1 vertices. In this note, we study the Ramsey numbers R ( P n , K 1 F m ) , where F m is a linear forest on m vertices. We determine the exact values of R ( P n , K 1 F m ) for the cases m n and m 2 n , and for the case that F m has no odd component. Moreover, we give a lower...

Page 1

Download Results (CSV)