Currently displaying 1 – 15 of 15

Showing per page

Order by Relevance | Title | Year of publication

Input-output systems in Biology and Chemistry and a class of mathematical models describing them

Erich BohlIvo Marek — 2005

Applications of Mathematics

Our aim is to show a class of mathematical models in application to some problems of cell biology. Typically, our models are described via classical chemical networks. This property is visualized by a conservation law. Mathematically, this conservation law guarantees most of the mathematical properties of the models such as global existence and uniqueness of solutions as well as positivity of the solutions for positive data. These properties are consequences of the fact that the infinitesimal generators...

Discrete evolutions: Convergence and applications

Erich BohlJohannes Schropp — 1993

Applications of Mathematics

We prove a convergence result for a time discrete process of the form x ( t + h ) - x ( t ) = h V ( h , x ( t + α 1 ( t ) h ) , . . . , x ( t + α L ( t ) h ) ) t = T + j h , j = 0 , . . . , σ ( h ) - 1 under weak conditions on the function V . This result is a slight generalization of the convergence result given in [5].Furthermore, we discuss applications to minimizing problems, boundary value problems and systems of nonlinear equations.

Page 1

Download Results (CSV)