The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 15 of 15

Showing per page

Order by Relevance | Title | Year of publication

On blow-up and asymptotic behavior of solutions to a nonlinear parabolic equation of second order with nonlinear boundary conditions

Théodore K. Boni — 1999

Commentationes Mathematicae Universitatis Carolinae

We obtain some sufficient conditions under which solutions to a nonlinear parabolic equation of second order with nonlinear boundary conditions tend to zero or blow up in a finite time. We also give the asymptotic behavior of solutions which tend to zero as t . Finally, we obtain the asymptotic behavior near the blow-up time of certain blow-up solutions and describe their blow-up set.

Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions

Diabate NabongoThéodore K. Boni — 2008

Commentationes Mathematicae Universitatis Carolinae

This paper concerns the study of the numerical approximation for the following boundary value problem: u t ( x , t ) - u x x ( x , t ) = - u - p ( x , t ) , 0 < x < 1 , t > 0 , u x ( 0 , t ) = 0 , u ( 1 , t ) = 1 , t > 0 , u ( x , 0 ) = u 0 ( x ) > 0 , 0 x 1 , where p > 0 . We obtain some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time. Finally, we give some numerical experiments to illustrate our analysis.

Quenching time of some nonlinear wave equations

Firmin K. N’gohisseThéodore K. Boni — 2009

Archivum Mathematicum

In this paper, we consider the following initial-boundary value problem u t t ( x , t ) = ε L u ( x , t ) + f ( u ( x , t ) ) in Ω × ( 0 , T ) , u ( x , t ) = 0 on Ω × ( 0 , T ) , u ( x , 0 ) = 0 in Ω , u t ( x , 0 ) = 0 in Ω , where Ω is a bounded domain in N with smooth boundary Ω , L is an elliptic operator, ε is a positive parameter, f ( s ) is a positive, increasing, convex function for s ( - , b ) , lim s b f ( s ) = and 0 b d s f ( s ) < with b = const > 0 . Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation α ' ' ( t ) = f ( α ( t ) ) , t > 0 , α ( 0 ) = 0 , α ' ( 0 ) = 0 , as ε goes to zero. We also show that the above result remains...

Page 1

Download Results (CSV)