Soient un corps de nombres et son groupe des classes. Une extension de à groupe de Galois isomorphe au groupe alterné est dite alternée. Soit une extension cyclique de degré . On calcule la classe de Steinitz, dans , de toute extension alternée contenant . Sous l’hypothèse que le nombre des classes de est impair, on détermine l’ensemble de telles classes et on montre que c’est un sous-groupe de lorsque l’anneau des entiers de est libre sur celui de ou ne divise pas l’ordre...
Given an algebraic number field and a finite group , we write for the subset of the locally free classgroup consisting of the classes of rings of integers in tame Galois extensions with . We determine , and show it is a subgroup of by means of a description using a Stickelberger ideal and properties of some cyclic codes, when contains a root of unity of prime order and , where is an elementary abelian group of order and is a cyclic group of order acting faithfully on...
Download Results (CSV)