Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Classes de Steinitz d’extensions à groupe de Galois A 4

Marjory GodinBouchaïb Sodaïgui — 2002

Journal de théorie des nombres de Bordeaux

Soient k un corps de nombres et 𝒞 l ( k ) son groupe des classes. Une extension de k à groupe de Galois isomorphe au groupe alterné A 4 est dite alternée. Soit E / k une extension cyclique de degré 3 . On calcule la classe de Steinitz, dans 𝒞 l ( k ) , de toute extension alternée contenant E . Sous l’hypothèse que le nombre des classes de k est impair, on détermine l’ensemble de telles classes et on montre que c’est un sous-groupe de 𝒞 l ( k ) lorsque l’anneau des entiers de E est libre sur celui de k ou 3 ne divise pas l’ordre...

Realizable Galois module classes over the group ring for non abelian extensions

Nigel P. ByottBouchaïb Sodaïgui — 2013

Annales de l’institut Fourier

Given an algebraic number field k and a finite group Γ , we write ( O k [ Γ ] ) for the subset of the locally free classgroup Cl ( O k [ Γ ] ) consisting of the classes of rings of integers O N in tame Galois extensions N / k with Gal ( N / k ) Γ . We determine ( O k [ Γ ] ) , and show it is a subgroup of Cl ( O k [ Γ ] ) by means of a description using a Stickelberger ideal and properties of some cyclic codes, when k contains a root of unity of prime order p and Γ = V C , where V is an elementary abelian group of order p r and C is a cyclic group of order m > 1 acting faithfully on...

Page 1

Download Results (CSV)