The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On a sequence formed by iterating a divisor operator

Bellaouar DjamelBoudaoud AbdelmadjidÖzen Özer — 2019

Czechoslovak Mathematical Journal

Let be the set of positive integers and let s . We denote by d s the arithmetic function given by d s ( n ) = ( d ( n ) ) s , where d ( n ) is the number of positive divisors of n . Moreover, for every , m we denote by δ s , , m ( n ) the sequence d s ( d s ( ... d s ( d s ( n ) + ) + ... ) + ) m -times = d s ( n ) for m = 1 , d s ( d s ( n ) + ) for m = 2 , d s ( d s ( d s ( n ) + ) + ) for m = 3 , We present classical and nonclassical notes on the sequence ( δ s , , m ( n ) ) m 1 , where , n , s are understood as parameters.

La conjecture de Dickson et classes particulières d’entiers

Abdelmadjid Boudaoud — 2006

Annales mathématiques Blaise Pascal

En admettant la conjecture de Dickson, nous démontrons que, pour chaque couple d’entiers q > 0 et k > 0 , il existe une partie infinie L q , k telle que, pour chacun des entiers n L q , k et tout entier s tel que 0 < s q , on ait n + s = s t 1 . . . t k t 1 < . . . < t k sont des nombres premiers. De même, pour chaque couple d’entiers q > 0 et k > 0 , il existe une partie infinie M q , k telle que, pour chacun des entiers n M q , k et tout entier s (nul ou non ) de l’intervalle - q , q , on ait n + s = l t 1 . . . t k t 1 < . . . < t k sont des nombres premiers et l’entier l appartient à l’intervalle 1 , 2 q + 1 . La lecture non standard...

Page 1

Download Results (CSV)