The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be the set of positive integers and let . We denote by the arithmetic function given by , where is the number of positive divisors of . Moreover, for every we denote by the sequence
We present classical and nonclassical notes on the sequence , where , , are understood as parameters.
En admettant la conjecture de Dickson, nous démontrons que, pour chaque couple d’entiers et , il existe une partie infinie telle que, pour chacun des entiers et tout entier tel que , on ait où sont des nombres premiers. De même, pour chaque couple d’entiers et , il existe une partie infinie telle que, pour chacun des entiers et tout entier (nul ou non ) de l’intervalle , on ait où sont des nombres premiers et l’entier appartient à l’intervalle . La lecture non standard...
Download Results (CSV)