The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we construct and analyze finite element methods for the three dimensional
Monge-Ampère equation. We derive methods using the Lagrange finite element space such that
the resulting discrete linearizations are symmetric and stable. With this in hand, we then
prove the well-posedness of the method, as well as derive quasi-optimal error estimates.
We also present some numerical experiments that back up the theoretical findings.
In this paper, we construct and analyze finite element methods for the three dimensional
Monge-Ampère equation. We derive methods using the Lagrange finite element space such that
the resulting discrete linearizations are symmetric and stable. With this in hand, we then
prove the well-posedness of the method, as well as derive quasi-optimal error estimates.
We also present some numerical experiments that back up the theoretical findings.
Download Results (CSV)