Two variations of Arhangelskii’s inequality
for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.
The definition of monotone weak Lindelöfness is similar to monotone versions of other covering properties: X is monotonically weakly Lindelöf if there is an operator r that assigns to every open cover U a family of open sets r(U) so that (1) ∪r(U) is dense in X, (2) r(U) refines U, and (3) r(U) refines r(V) whenever U refines V. Some examples and counterexamples of monotonically weakly Lindelöf spaces are given and some basic properties such as the behavior with respect to products and subspaces...
In this note we show a relative version of -set introduced and studied in [12]. We give several characterizations of this property; in particular one of the characterizations is Ramsey theoretical. Also we give a result involving a property of the corresponding mapping between function spaces.
Download Results (CSV)