The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

The real symmetric matrices of odd order with a P-set of maximum size

Zhibin DuCarlos Martins da Fonseca — 2016

Czechoslovak Mathematical Journal

Suppose that A is a real symmetric matrix of order n . Denote by m A ( 0 ) the nullity of A . For a nonempty subset α of { 1 , 2 , ... , n } , let A ( α ) be the principal submatrix of A obtained from A by deleting the rows and columns indexed by α . When m A ( α ) ( 0 ) = m A ( 0 ) + | α | , we call α a P-set of A . It is known that every P-set of A contains at most n / 2 elements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As a first step...

Root location for the characteristic polynomial of a Fibonacci type sequence

Zhibin DuCarlos Martins da Fonseca — 2023

Czechoslovak Mathematical Journal

We analyse the roots of the polynomial x n - p x n - 1 - q x - 1 for p q 1 . This is the characteristic polynomial of the recurrence relation F k , p , q ( n ) = p F k , p , q ( n - 1 ) + q F k , p , q ( n - k + 1 ) + F k , p , q ( n - k ) for n k , which includes the relations of several particular sequences recently defined. In the end, a matricial representation for such a recurrence relation is provided.

Page 1

Download Results (CSV)