Géométrie systolique et métriques polyèdrales sur les 3-variétés de Bieberbach
La systole d’une variété riemannienne compacte non simplement connexe est la plus petite longueur d’une courbe fermée non contractile ; le rapport systolique est le quotient . Sa borne supérieure, sur l’ensemble des métriques riemanniennes, est fini pour une large classe de variétés, dont les . On étudie le rapport systolique optimal des variétés de Bieberbach compactes, orientables de dimension qui ne sont pas des tores, et on démontre en utilisant des constructions de métriques...