The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Time regularity of generalized Navier-Stokes equation with p ( x , t ) -power law

Cholmin Sin — 2023

Czechoslovak Mathematical Journal

We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by p ( x , t ) -power law for p ( x , t ) ( 3 n + 2 ) / ( n + 2 ) , n 2 , by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique.

Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions

Cholmin SinSin-Il Ri — 2022

Mathematica Bohemica

We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided p ( x ) > 2 n / ( n + 2 ) . To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.

Properties of a quasi-uniformly monotone operator and its application to the electromagnetic $p$-$\text {curl}$ systems

Chang-Ho SongYong-Gon RiCholmin Sin — 2022

Applications of Mathematics

In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation $Au=b$. We prove that if $A$ is a quasi-uniformly monotone and hemi-continuous operator, then $A^{-1}$ is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence...

Page 1

Download Results (CSV)