The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Lucas sequences with cyclotomic root field

Christian Ballot — 2013

A pair of Lucas sequences Uₙ = (αⁿ-βⁿ)/(α-β) and Vₙ = αⁿ + βⁿ is famously associated with each polynomial x² - Px + Q ∈ ℤ[x] with roots α and β. It is the purpose of this paper to show that when the root field of x² - Px + Q is either ℚ(i), or ℚ(ω), where ω = e 2 π i / 6 , there are respectively two and four other second-order integral recurring sequences of characteristic polynomial x² - Px + Q that are of the same kinship as the U and V Lucas sequences. These are, when ℚ(α,β) = ℚ(i), the G and the H sequences...

Counting monic irreducible polynomials P in 𝔽 q [ X ] for which order of X ( mod P ) is odd

Christian Ballot — 2007

Journal de Théorie des Nombres de Bordeaux

Hasse showed the existence and computed the Dirichlet density of the set of primes p for which the order of 2 ( mod p ) is odd; it is 7 / 24 . Here we mimic successfully Hasse’s method to compute the density δ q of monic irreducibles P in 𝔽 q [ X ] for which the order of X ( mod P ) is odd. But on the way, we are also led to a new and elementary proof of these densities. More observations are made, and averages are considered, in particular, an average of the δ p ’s as p varies through all rational primes.

On the sumset of the primes and a linear recurrence

Christian BallotFlorian Luca — 2013

Acta Arithmetica

Romanoff (1934) showed that integers that are the sum of a prime and a power of 2 have positive lower asymptotic density in the positive integers. We adapt his method by showing more generally the existence of a positive lower asymptotic density for integers that are the sum of a prime and a term of a given nonconstant nondegenerate integral linear recurrence with separable characteristic polynomial.

Page 1

Download Results (CSV)