The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On cubics and quartics through a canonical curve

Christian Pauly — 2003

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We construct families of quartic and cubic hypersurfaces through a canonical curve, which are parametrized by an open subset in a grassmannian and a Flag variety respectively. Using G. Kempf’s cohomological obstruction theory, we show that these families cut out the canonical curve and that the quartics are birational (via a blowing-up of a linear subspace) to quadric bundles over the projective plane, whose Steinerian curve equals the canonical curve

Singularities of 2 Θ -divisors in the jacobian

Christian PaulyEmma Previato — 2001

Bulletin de la Société Mathématique de France

We consider the linear system | 2 Θ 0 | of second order theta functions over the Jacobian J C of a non-hyperelliptic curve C . A result by J.Fay says that a divisor D | 2 Θ 0 | contains the origin 𝒪 J C with multiplicity 4 if and only if D contains the surface C - C = { 𝒪 ( p - q ) p , q C } J C . In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing 𝒪 with multiplicity 6 , divisors containing the fourfold C 2 - C 2 = { 𝒪 ( p + q - r - s ) p , q , r , s C } , and divisors singular along C - C , using the third exterior...

Polarizations of Prym varieties for Weyl groups via abelianization

Herbert LangeChristian Pauly — 2009

Journal of the European Mathematical Society

Let π : Z X be a Galois covering of smooth projective curves with Galois group the Weyl group of a simple and simply connected Lie group G . For any dominant weight λ consider the curve Y = Z / Stab ( λ ) . The Kanev correspondence defines an abelian subvariety P λ of the Jacobian of Y . We compute the type of the polarization of the restriction of the canonical principal polarization of Jac ( Y ) to P λ in some cases. In particular, in the case of the group E 8 we obtain families of Prym-Tyurin varieties. The main idea is the use of...

Semistability of Frobenius direct images over curves

Vikram B. MehtaChristian Pauly — 2007

Bulletin de la Société Mathématique de France

Let X be a smooth projective curve of genus g 2 defined over an algebraically closed field k of characteristic p > 0 . Given a semistable vector bundle  E over X , we show that its direct image F * E under the Frobenius map F of X is again semistable. We deduce a numerical characterization of the stable rank- p vector bundles  F * L , where L is a line bundle over X .

Page 1

Download Results (CSV)