The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give an algorithm to compute the modular degree of an elliptic curve defined over . Our method is based on the computation of the special value at of the symmetric square of the -function attached to the elliptic curve. This method is quite efficient and easy to implement.
Let be an elliptic curve defined over with conductor and denote by the modular parametrization:
In this paper, we are concerned with the critical and ramification points of . In particular, we explain how we can obtain a more or less experimental study of these points.
This article deals with the coherence of the model given by the Cohen-Lenstra heuristic philosophy for class groups and also for their generalizations to Tate-Shafarevich groups. More precisely, our first goal is to extend a previous result due to É. Fouvry and J. Klüners which proves that a conjecture provided by the Cohen-Lenstra philosophy implies another such conjecture. As a consequence of our work, we can deduce, for example, a conjecture for the probability laws of -ranks of Selmer groups...
We investigate the regulators of elliptic curves with rank 1 in some families of quadratic twists of a fixed elliptic curve. In particular, we formulate some conjectures on the average size of these regulators. We also describe an efficient algorithm to compute explicitly some of the invariants of a rank one quadratic twist of an elliptic curve (regulator, order of the Tate-Shafarevich group, etc.) and we discuss the numerical data that we obtain and compare it with our predictions.
Download Results (CSV)