The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces

D. EdmundsYu. Netrusov — 1998

Studia Mathematica

Let id be the natural embedding of the Sobolev space W p l ( Ω ) in the Zygmund space L q ( l o g L ) a ( Ω ) , where Ω = ( 0 , 1 ) n , 1 < p < ∞, l ∈ ℕ, 1/p = 1/q + l/n and a < 0, a ≠ -l/n. We consider the entropy numbers e k ( i d ) of this embedding and show that e k ( i d ) k - η , where η = min(-a,l/n). Extensions to more general spaces are given. The results are applied to give information about the behaviour of the eigenvalues of certain operators of elliptic type.

Two-sided estimates of the approximation numbers of certain Volterra integral operators

D. EdmundsW. EvansD. Harris — 1997

Studia Mathematica

We consider the Volterra integral operator T : L p ( + ) L p ( + ) defined by ( T f ) ( x ) = v ( x ) ʃ 0 x u ( t ) f ( t ) d t . Under suitable conditions on u and v, upper and lower estimates for the approximation numbers a n ( T ) of T are established when 1 < p < ∞. When p = 2 these yield l i m n n a n ( T ) = π - 1 ʃ 0 | u ( t ) v ( t ) | d t . We also provide upper and lower estimates for the α and weak α norms of (an(T)) when 1 < α < ∞.

Fourier approximation and embeddings of Sobolev spaces

CONTENTSIntroduction............................................................................................................ 51. Preliminaries............................................................................................................. 82. Embedding into W m , p ( Ω ) into L S ( Ω ) (n>1).......................................... 103. The case n = 1.......................................................................................................... 284. Embedding W m , p ( Ω ) into L φ ( Ω ) ...............................................................

Spaces of Lipschitz type, embeddings and entropy numbers

AbstractWe establish the sharpness of the embedding of certain Besov and Triebel-Lizorkin spaces in spaces of Lipschitz type. In particular, this proves the sharpness of the Brézis-Wainger result concerning the “almost” Lipschitz continuity of elements of the Sobolev space H p 1 + n / p ( ) , where 1 < p < ∞. Upper and lower estimates are obtained for the entropy numbers of related embeddings of Besov spaces on bounded domains. CONTENTSIntroduction...........................................................51....

Page 1

Download Results (CSV)