The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 13 of 13

Showing per page

Order by Relevance | Title | Year of publication

Positive solutions of nonlinear elliptic systems

Robert Dalmasso — 1993

Annales Polonici Mathematici

We study the existence and nonexistence of positive solutions of nonlinear elliptic systems in an annulus with Dirichlet boundary conditions. In particular, L a priori bounds are obtained. We also study a general multiple linear eigenvalue problem on a bounded domain.

Un résultat sur les fonctions de classe C 1 , α et application au problème de Cauchy

Robert Dalmasso — 1986

Annales de l'institut Fourier

Nous montrons principalement que, si f 0 est une fonction différentiable sur un intervalle [ 0 , T ] , si sa dérivée est höldérienne d’ordre α avec 0 < α 1 et si f ' ( 0 ) = 0 (resp. f ' ( T ) = 0 ) quand f ( 0 ) = 0 (resp. f ( T ) = 0 ) alors f 1 / ( 1 + α ) , qui est absolument continue, admet (presque partout) une dérivée bornée presque partout.

Uniqueness of positive solutions of nonlinear second order systems.

Robert Dalmasso — 1995

Revista Matemática Iberoamericana

In this paper we discuss the uniqueness of positive solutions of the nonlinear second order system -u'' = g(v), -v'' = f(u) in (-R,R), u(±R) = v(±R) = 0 where f and g satisfy some appropriate conditions. Our result applies, in particular, to g(v) = v, f(u) = u, p > 1, or f(u) = λu + au + ... + au, with p > 1, a > 0 for j = 1, ..., k and 0 ≤ λ < μ where μ = π/4R.

Page 1

Download Results (CSV)