On étudie différentes propriétés d’approximation pour des espaces homogènes (à stabilisateur fini) de sur un corps de nombres. On discute également du lien avec le problème de Galois inverse et on établit une formule pour le groupe de Brauer non ramifié de .
On calcule par des méthodes arithmétiques le groupe de Brauer non ramifié des espaces homogènes de groupes algébriques linéaires sur différents corps. Les formules obtenues font intervenir l’hypercohomologie de complexes de groupes de type multiplicatif.
Let be an algebraic variety defined over a field of characteristic , and let
be an -torsor under a torus. We compute the Brauer group of . In the case of a
number field we deduce results concerning the arithmetic of .
Download Results (CSV)