Henri Poincaré avait déjà remarqué que les variétés stable et instable du pendule perturbé, défini par l’hamiltonien
ne coïncident pas lorsque que le paramètre n’est pas nul, mais qu’on peut leur associer un même développement formel divergent en puissance de . Cette divergence est ici analysée au moyen de la récente théorie de la résurgence, et du calcul étranger qui permet de trouver un équivalent asymptotique de...
We study two complex invariant manifolds associated with the parabolic fixed point of
the area-preserving Hénon map. A single formal power series corresponds to both of them.
The Borel transform of the formal series defines an analytic germ. We explore the Riemann
surface and singularities of its analytic continuation. In particular we give a complete
description of the “first” singularity and prove that a constant, which describes the
splitting of the invariant manifolds, does not vanish. An interpretation...
We study the resurgent structure associated with a Hamilton-Jacobi equation. This
equation is obtained as the inner equation when studying the separatrix splitting problem
for a perturbed pendulum via complex matching. We derive the Bridge equation, which
encompasses infinitely many resurgent relations satisfied by the formal solution and the
other components of the formal integral.
Download Results (CSV)