Resurgence in a Hamilton-Jacobi equation

Carme Olivé[1]; David Sauzin[2]; Tere M. Seara[3]

  • [1] Universitat Rovira i Virgili, Dep. d'Enginyeria Informàtica i Matemàtiques, Avda Països Catala s 26, 43007 Tarragona (Espagne)
  • [2] Institut de Mécanique Céleste - CNRS, Astronomie et Systèmes Dynamiques, 77 avenue Denfert-Rochereau, 75014 Paris (France)
  • [3] Universitat Politècnica de Catalunya, Dep. de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona (Espagne)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 4, page 1185-1235
  • ISSN: 0373-0956

Abstract

top
We study the resurgent structure associated with a Hamilton-Jacobi equation. This equation is obtained as the inner equation when studying the separatrix splitting problem for a perturbed pendulum via complex matching. We derive the Bridge equation, which encompasses infinitely many resurgent relations satisfied by the formal solution and the other components of the formal integral.

How to cite

top

Olivé, Carme, Sauzin, David, and Seara, Tere M.. "Resurgence in a Hamilton-Jacobi equation." Annales de l’institut Fourier 53.4 (2003): 1185-1235. <http://eudml.org/doc/116065>.

@article{Olivé2003,
abstract = {We study the resurgent structure associated with a Hamilton-Jacobi equation. This equation is obtained as the inner equation when studying the separatrix splitting problem for a perturbed pendulum via complex matching. We derive the Bridge equation, which encompasses infinitely many resurgent relations satisfied by the formal solution and the other components of the formal integral.},
affiliation = {Universitat Rovira i Virgili, Dep. d'Enginyeria Informàtica i Matemàtiques, Avda Països Catala s 26, 43007 Tarragona (Espagne); Institut de Mécanique Céleste - CNRS, Astronomie et Systèmes Dynamiques, 77 avenue Denfert-Rochereau, 75014 Paris (France); Universitat Politècnica de Catalunya, Dep. de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona (Espagne)},
author = {Olivé, Carme, Sauzin, David, Seara, Tere M.},
journal = {Annales de l’institut Fourier},
keywords = {Hamilton-Jacobi equation; splitting of separatrices; Borel summation; resurgence},
language = {eng},
number = {4},
pages = {1185-1235},
publisher = {Association des Annales de l'Institut Fourier},
title = {Resurgence in a Hamilton-Jacobi equation},
url = {http://eudml.org/doc/116065},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Olivé, Carme
AU - Sauzin, David
AU - Seara, Tere M.
TI - Resurgence in a Hamilton-Jacobi equation
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 4
SP - 1185
EP - 1235
AB - We study the resurgent structure associated with a Hamilton-Jacobi equation. This equation is obtained as the inner equation when studying the separatrix splitting problem for a perturbed pendulum via complex matching. We derive the Bridge equation, which encompasses infinitely many resurgent relations satisfied by the formal solution and the other components of the formal integral.
LA - eng
KW - Hamilton-Jacobi equation; splitting of separatrices; Borel summation; resurgence
UR - http://eudml.org/doc/116065
ER -

References

top
  1. W. Balser, M. Miyake, Summability of formal solutions of certain partial differential equations, Acta Sci. Math. 65 (1999), 543-551 Zbl0987.35032MR1737270
  2. C. Bonet, D. Sauzin, T.M. Seara, M. València, Adiabatic invariant of the harmonic oscillator, complex matching and resurgence, SIAM J. Math. Anal. 29 (1998), 1335-1360 Zbl0913.58019MR1638050
  3. B. Candelpergher, J.-C. Nosmas, F. Pham, Premiers pas en calcul étranger, Ann. Inst. Fourier 43 (1993), 201-224 Zbl0785.30017MR1209701
  4. B. Candelpergher, J.-C. Nosmas, F. Pham, Approche de la résurgence, (1993), Hermann, Paris Zbl0791.32001MR1250603
  5. A. Chenciner, Extrémales : dynamique et géométrie, (2002) 
  6. A. Delshams, T. Seara, An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum, Comm. Math. Phys. 150 (1992), 433-463 Zbl0765.70016MR1204314
  7. J. Écalle, Les fonctions résurgentes, vol. 1 (1981), Paris Zbl0499.30034
  8. J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, (1992), Hermann, Paris MR1399559
  9. J. Écalle, Six lectures on Transseries, Analysable Functions and the Constructive Proof of Dulac's conjecture, Bifurcations and Periodic Orbits of Vector Fields (1993), 75-184, Kluwer Ac. Publishers Zbl0814.32008
  10. V. Gelfreich, Reference systems for splitting of separatrices, Nonlinearity 10 (1997), 175-193 Zbl0909.70019MR1430747
  11. V. Gelfreich, D. Sauzin, Borel summation and splitting of separatrices for the Hénon map, Ann. Inst. Fourier 51 (2001), 1001-1055 Zbl0988.37031MR1824963
  12. P. Lochak, J.-P. Marco, D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems, Memoirs of the A.M.S 163 (2003) Zbl1038.70001MR1964346
  13. B. Malgrange, Resommation des séries divergentes, Exp. Math. 13 (1995), 163-222 Zbl0836.40004MR1346201
  14. C. Olivé, T.M. Seara, Matching complejo y resurgencia en el problema de la escisión de separatrices, Actas CEDYA99 (1999), 419-426 
  15. F. Pham, Résurgence d'un thème de Huygens-Fresnel, Publ. Math. Inst. Hautes Études Sci. 68 (1988), 77-90 Zbl0688.35093MR1001448
  16. F. Pham, Fonctions résurgentes implicites, C. R. Acad. Sci. Paris 309 (1989), 999-1001 Zbl0734.32001MR1054521
  17. H. Poincaré, Les méthodes nouvelles de la mécanique céleste, vol. 2 (1893), Gauthier-Villars, Paris Zbl25.1847.03
  18. D. Sauzin, Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé, Ann. Inst. Fourier 45 (1995), 453-511 Zbl0826.30004MR1343559
  19. D. Treschev, Splitting of separatrices for a pendulum with rapidly oscillating suspension point., Russian J. Math. Phys. 5 (1997), 63-98 Zbl0947.34034MR1486763
  20. J. Écalle, Les fonctions résurgentes, vol. 2 (1981), Paris Zbl0499.30035
  21. J. Écalle, Singularités non abordables par la géométrie., Ann. Inst. Fourier 52 (1992), 73-164 Zbl0940.32013MR1162558
  22. J. Écalle, Les fonctions résurgentes, vol. 3 (1985), Paris Zbl0602.30029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.