Resurgence in a Hamilton-Jacobi equation
Carme Olivé[1]; David Sauzin[2]; Tere M. Seara[3]
- [1] Universitat Rovira i Virgili, Dep. d'Enginyeria Informàtica i Matemàtiques, Avda Països Catala s 26, 43007 Tarragona (Espagne)
- [2] Institut de Mécanique Céleste - CNRS, Astronomie et Systèmes Dynamiques, 77 avenue Denfert-Rochereau, 75014 Paris (France)
- [3] Universitat Politècnica de Catalunya, Dep. de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona (Espagne)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 4, page 1185-1235
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topOlivé, Carme, Sauzin, David, and Seara, Tere M.. "Resurgence in a Hamilton-Jacobi equation." Annales de l’institut Fourier 53.4 (2003): 1185-1235. <http://eudml.org/doc/116065>.
@article{Olivé2003,
abstract = {We study the resurgent structure associated with a Hamilton-Jacobi equation. This
equation is obtained as the inner equation when studying the separatrix splitting problem
for a perturbed pendulum via complex matching. We derive the Bridge equation, which
encompasses infinitely many resurgent relations satisfied by the formal solution and the
other components of the formal integral.},
affiliation = {Universitat Rovira i Virgili, Dep. d'Enginyeria Informàtica i Matemàtiques, Avda Països Catala s 26, 43007 Tarragona (Espagne); Institut de Mécanique Céleste - CNRS, Astronomie et Systèmes Dynamiques, 77 avenue Denfert-Rochereau, 75014 Paris (France); Universitat Politècnica de Catalunya, Dep. de Matemàtica Aplicada I, Diagonal 647, 08028 Barcelona (Espagne)},
author = {Olivé, Carme, Sauzin, David, Seara, Tere M.},
journal = {Annales de l’institut Fourier},
keywords = {Hamilton-Jacobi equation; splitting of separatrices; Borel summation; resurgence},
language = {eng},
number = {4},
pages = {1185-1235},
publisher = {Association des Annales de l'Institut Fourier},
title = {Resurgence in a Hamilton-Jacobi equation},
url = {http://eudml.org/doc/116065},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Olivé, Carme
AU - Sauzin, David
AU - Seara, Tere M.
TI - Resurgence in a Hamilton-Jacobi equation
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 4
SP - 1185
EP - 1235
AB - We study the resurgent structure associated with a Hamilton-Jacobi equation. This
equation is obtained as the inner equation when studying the separatrix splitting problem
for a perturbed pendulum via complex matching. We derive the Bridge equation, which
encompasses infinitely many resurgent relations satisfied by the formal solution and the
other components of the formal integral.
LA - eng
KW - Hamilton-Jacobi equation; splitting of separatrices; Borel summation; resurgence
UR - http://eudml.org/doc/116065
ER -
References
top- W. Balser, M. Miyake, Summability of formal solutions of certain partial differential equations, Acta Sci. Math. 65 (1999), 543-551 Zbl0987.35032MR1737270
- C. Bonet, D. Sauzin, T.M. Seara, M. València, Adiabatic invariant of the harmonic oscillator, complex matching and resurgence, SIAM J. Math. Anal. 29 (1998), 1335-1360 Zbl0913.58019MR1638050
- B. Candelpergher, J.-C. Nosmas, F. Pham, Premiers pas en calcul étranger, Ann. Inst. Fourier 43 (1993), 201-224 Zbl0785.30017MR1209701
- B. Candelpergher, J.-C. Nosmas, F. Pham, Approche de la résurgence, (1993), Hermann, Paris Zbl0791.32001MR1250603
- A. Chenciner, Extrémales : dynamique et géométrie, (2002)
- A. Delshams, T. Seara, An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum, Comm. Math. Phys. 150 (1992), 433-463 Zbl0765.70016MR1204314
- J. Écalle, Les fonctions résurgentes, vol. 1 (1981), Paris Zbl0499.30034
- J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, (1992), Hermann, Paris MR1399559
- J. Écalle, Six lectures on Transseries, Analysable Functions and the Constructive Proof of Dulac's conjecture, Bifurcations and Periodic Orbits of Vector Fields (1993), 75-184, Kluwer Ac. Publishers Zbl0814.32008
- V. Gelfreich, Reference systems for splitting of separatrices, Nonlinearity 10 (1997), 175-193 Zbl0909.70019MR1430747
- V. Gelfreich, D. Sauzin, Borel summation and splitting of separatrices for the Hénon map, Ann. Inst. Fourier 51 (2001), 1001-1055 Zbl0988.37031MR1824963
- P. Lochak, J.-P. Marco, D. Sauzin, On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems, Memoirs of the A.M.S 163 (2003) Zbl1038.70001MR1964346
- B. Malgrange, Resommation des séries divergentes, Exp. Math. 13 (1995), 163-222 Zbl0836.40004MR1346201
- C. Olivé, T.M. Seara, Matching complejo y resurgencia en el problema de la escisión de separatrices, Actas CEDYA99 (1999), 419-426
- F. Pham, Résurgence d'un thème de Huygens-Fresnel, Publ. Math. Inst. Hautes Études Sci. 68 (1988), 77-90 Zbl0688.35093MR1001448
- F. Pham, Fonctions résurgentes implicites, C. R. Acad. Sci. Paris 309 (1989), 999-1001 Zbl0734.32001MR1054521
- H. Poincaré, Les méthodes nouvelles de la mécanique céleste, vol. 2 (1893), Gauthier-Villars, Paris Zbl25.1847.03
- D. Sauzin, Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé, Ann. Inst. Fourier 45 (1995), 453-511 Zbl0826.30004MR1343559
- D. Treschev, Splitting of separatrices for a pendulum with rapidly oscillating suspension point., Russian J. Math. Phys. 5 (1997), 63-98 Zbl0947.34034MR1486763
- J. Écalle, Les fonctions résurgentes, vol. 2 (1981), Paris Zbl0499.30035
- J. Écalle, Singularités non abordables par la géométrie., Ann. Inst. Fourier 52 (1992), 73-164 Zbl0940.32013MR1162558
- J. Écalle, Les fonctions résurgentes, vol. 3 (1985), Paris Zbl0602.30029
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.