The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Characterization of the interior regularity for parabolic systems with discontinuous coefficients

Dian K. PalagachevLubomira G. Softova — 2005

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We deal in this Note with linear parabolic (in sense of Petrovskij) systems of order 2 b with discontinuous principal coefficients belonging to V M O L . By means of a priori estimates in Sobolev-Morrey spaces we give a precise characterization of the Morrey, BMO and Hölder regularity of the solutions and their derivatives up to order 2 b - 1 .

Oblique derivative problem for elliptic equations in non-divergence form with V M O coefficients

Giuseppe di FazioDian K. Palagachev — 1996

Commentationes Mathematicae Universitatis Carolinae

A priori estimates and strong solvability results in Sobolev space W 2 , p ( Ω ) , 1 < p < are proved for the regular oblique derivative problem i , j = 1 n a i j ( x ) 2 u x i x j = f ( x ) a.e. Ω u + σ ( x ) u = ϕ ( x ) on Ω when the principal coefficients a i j are V M O L functions.

Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients

Dian K. PalagachevMaria A. RagusaLubomira G. Softova — 2003

Bollettino dell'Unione Matematica Italiana

Let Q T be a cylinder in R n + 1 and x = x , t R n × R . It is studied the Cauchy-Dirichlet problem for the uniformly parabolic operator u t - i , j = 1 n a i j x D i j u = f x q.o. in  Q T , u x = 0 su  Q T , in the Morrey spaces W p , λ 2 , 1 Q T , p 1 , , λ 0 , n + 2 , supposing the coefficients to belong to the class of functions with vanishing mean oscillation. There are obtained a priori estimates in Morrey spaces and Hölder regularity for the solution and its spatial derivatives.

Page 1

Download Results (CSV)