The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We deal in this Note with linear parabolic (in sense of Petrovskij) systems of order with discontinuous principal coefficients belonging to . By means of a priori estimates in Sobolev-Morrey spaces we give a precise characterization of the Morrey, BMO and Hölder regularity of the solutions and their derivatives up to order .
A priori estimates and strong solvability results in Sobolev space , are proved for the regular oblique derivative problem
when the principal coefficients are functions.
Let be a cylinder in and . It is studied the Cauchy-Dirichlet problem for the uniformly parabolic operator in the Morrey spaces , , , supposing the coefficients to belong to the class of functions with vanishing mean oscillation. There are obtained a priori estimates in Morrey spaces and Hölder regularity for the solution and its spatial derivatives.
Download Results (CSV)