A restriction theorem and the Poincare series for U-invariants.
We study -actions of the form , where is the dual (to ) -variety. These actions are called the doubled ones. A geometric interpretation of the complexity of the action is given. It is shown that the doubled actions have a number of nice properties, if is spherical or of complexity one.
We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s -groups. This yields a description of spherical...
We prove an extension of Rais' theorem on the coadjoint representation of certain graded Lie algebras. As an application, we prove that, for the coadjoint representation of any seaweed subalgebra in a general linear or symplectic Lie algebra, there is a generic stabiliser and the field of invariants is rational. It is also shown that if the highest root of a simple Lie algerba is not fundamental, then there is a parabolic subalgebra whose coadjoint representation do not...
Let be a simple Lie algebra and the poset of non-trivial abelian ideals of a fixed Borel subalgebra of . In [8], we constructed a partition parameterised by the long positive roots of and studied the subposets . In this note, we show that this partition is compatible with intersections, relate it to the Kostant-Peterson parameterisation and to the centralisers of abelian ideals. We also prove that the poset of positive roots of is a join-semilattice.
Recently, E.Feigin introduced a very interesting contraction of a semisimple Lie algebra (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of . For instance, the algebras of invariants of both adjoint and coadjoint representations of are free, and also the enveloping algebra of is a free module over its centre.
Page 1