In this paper we introduce a two-parameter generalization of the classical Jacobsthal numbers ((s,p)-Jacobsthal numbers). We present some properties of the presented sequence, among others Binet’s formula, Cassini’s identity, the generating function. Moreover, we give a graph interpretation of (s,p)-Jacobsthal numbers, related to independence in graphs.
In this paper we introduce and study a generalization of the split Pell quaternions - split r-Pell quaternions. We give some identities, among others Binet's formula, Catalan's, Cassini's and d'Ocagne's identity for these numbers.
In this paper we introduce a new two-parameters generalization ofFibonacci numbers - distance s-Fibonacci numbers F_s(k,n). We generalize known distance Fibonacci numbers by adding an additional integer parameter s. We give combinatorial and graph interpretations of these numbers. Moreover, we present some properties of distance s-Fibonacci numbers, which generalize known properties of classical Fibonacci and Padovan numbers.
In this paper we generalize Jacobsthal quaternions to Jacobsthal quaternions. We give some of their properties, among others the Binet formula, the generating function and the matrix representation of these quaternions. We will show how a graph interpretation can be used in proving some identities for quaternions.
In this paper, a new generalization of Mersenne bihyperbolic numbers is introduced. Some of the properties of presented numbers are given. A general bilinear index-reduction formula for the generalized bihyperbolic Mersenne numbers is obtained. This result implies the Catalan, Cassini, Vajda, d'Ocagne and Halton identities. Moreover, generating function and matrix generators for these numbers are presented.
In this paper we introduce bihyperbolic numbers of the Fibonacci type. We present some of their properties using matrix generators and idempotent representations.
We study generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions. We present some properties of these quaternions and the relations between the generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions.
Download Results (CSV)