This paper represents a start in the study of epimorphisms in some categories of Hilbert algebras. Even if we give a complete characterization for such epimorphisms only for implication algebras, the following results will make possible the construction of some examples of epimorphisms which are not surjective functions. Also, we will show that the study of epimorphisms of Hilbert algebras is equivalent with the study of epimorphisms of Hertz algebras.
For an n-valued Łukasiewicz-Moisil algebra L (or LM n-algebra for short) we denote by F n(L) the lattice of all n-filters of L. The goal of this paper is to study the lattice F n(L) and to give new characterizations for the meet-irreducible and completely meet-irreducible elements on F n(L).
The concept of a deductive system has been intensively studied in algebraic logic, per se and in connection with various types of filters. In this paper we introduce an axiomatization which shows how several resembling theorems that had been separately proved for various algebras of logic can be given unique proofs within this axiomatic framework. We thus recapture theorems already known in the literature, as well as new ones. As a by-product we introduce the class of pre-BCK algebras.
Download Results (CSV)